

© The 2018 International Conference on Artificial Life and Robotics (ICAROB2018), Feb. 1-4, B-Con Plaza, Beppu, Oita, Japan

Implementation of ROS package for simultaneous video streaming
 from several different cameras

Ramil Safin, Roman Lavrenov
Intelligent Robotic Systems Laboratory, Higher Institute for Information Technology and Information Systems (ITIS),

 Kazan Federal University, 35 Kremlyovskaya street
Kazan, 420008, Russian Federation

E-mail: safin.ramil@it.kfu.ru, lavrenov@it.kfu.ru
http://kpfu.ru/robolab.html

Abstract

Real time video stream capturing and processing is important for a variety of tasks in robotics. We created ROS
package that captures concurrent video stream from 4 different cameras of Russian mobile robot “Servosila” Engineer.
V4L2 API was used to configure video devices and to retrieve raw data from cameras. Memory mapping approach
of mapping device buffers increased overall performance by eliminating redundant memory copies. We demonstrate
the comparison of our new package and OpenCV based package.

Keywords: Video Streaming, V4L2, ROS, C++11, OpenCV, mobile ground robot, experiments.

1. Introduction

Capturing video stream from a robot is an important task
for multiple purposes, e.g., visual simultaneous
localization and mapping (SLAM)1 in path planning2,
human-robot interaction3, teleoperation in urban search
and rescue4, etc. In some cases, it is necessary to retrieve
and process video data in a real-time mode. Moreover,
while single cameras are used for monocular SLAM
algorithms5 for UAVs and simple robots, for more
sophisticated robots multiple cameras could be used, for
example, as a stereo pair in order to implement SLAM.
Thus, as these algorithms may request large computing
powers a mobile robot may require transferring sensory
data to a more powerful computing device for
information processing and analysis.

In our ROS package development process, we used
Russian crawler robot Servosila Engineer6. It has four
cameras and client–server application programming
interface (API). Even though it is possible to switch
between the cameras using original GUI of the robot, it

cannot stream video data from all cameras at one time.
Therefore, we created robot operating system (ROS)
package that enables streaming video from the four
cameras simultaneously. Our next goal is to stream real
time video data via a wireless connection and to develop
a server based on a real-time transport protocol (RTP)
that will enable clients to receive video data from the
robot and improve teleoperation process as an operator
can receive more information about environment.

2. Vision-related features of the robot

A crawler-type mobile robot Engineer (Fig.1) is equipped
with four cameras that provide good situation awareness.
Three of the four cameras in the robot head are located
on the front side and one is a rear view camera:

 frontal optical zoom camera
 frontal wide-angle cameras pair (stereo vision)
 wide-angle rear view camera

220

Ramil Safin, Roman Lavrenov

© The 2018 International Conference on Artificial Life and Robotics (ICAROB2018), Feb. 1-4, B-Con Plaza, Beppu, Oita, Japan

The installed operating system (OS) is Ubuntu 14.04 LTS
(Trusty Tahr). The CPU is Intel® Core™ i7-3517UE
(1.70GHz) with 2 physical cores.

3. Video streaming ROS package

3.1. Streaming with V4L2 API

To capture video from the cameras, we use the second
version of Video4Linux API (V4L2 API), which is pre-
installed within the OS by the maker. Programming a
V4L2 video device consists of the following steps7:

 Opening the device
 Changing device properties
 Selecting a video standard
 Negotiating a data format
 Negotiating an input/output method
 The actual input/output loop
 Closing the device

Video device parameters are adjusted by input/output
control (ioctl) requests. It is a system call for
manipulating underlying device parameters (i.e. video
format, frames per second, etc.).

The workflow of typical V4L2 application (Fig. 2)
may vary depending on use case. For example, our
implementation does not render captured frames. The
initial step is to open the device as it is needed in order to
be able to adjust device for streaming. In order to invoke
ioctl requests, device’s file descriptor should be opened
for reading and writing operations.

Secondly, device capabilities are queried. The
purpose of this step is to ensure whether device is able to
stream and capture video. It is necessary to negotiate
exchanged data (image) format in order to avoid
ambiguity. In our case, Engineer’s three cameras (stereo
pair and rare view) support only Bayer pattern format8 as
a raw data from the device’s driver. The optical zoom
camera’s raw data presents an image encoded in YUV
color space.

After negotiating video streaming data format, device
buffers are allocated. A buffer contains raw image data
exchanged by the application and device’s driver using
streaming input/output (I/O) methods. In order to handle
captured video data, memory mapping (mmap) I/O
approach is used. It increases performance by eliminating
redundant memory copies from user to kernel space. The
application and the driver exchange pointers to buffers.
Hence, we can access captured video data directly in
application memory.

Fig. 1. Servosila Engineer crawler-type UGV

Fig. 3. The process of retrieving frames from V4L2 device
using special V4L2 API calls (placing buffer in the incoming
queue and getting raw data from outgoing queue)

Fig. 2. Common V4L2 video capturing application workflow

221

 Implementation of ROS package

© The 2018 International Conference on Artificial Life and Robotics (ICAROB2018), Feb. 1-4, B-Con Plaza, Beppu, Oita, Japan

Then, we need to query buffers in order to obtain
information about allocated buffers, such as memory
location (pointers) and buffer length (size).

The process of getting recent frames consists of the
queuing and dequeuing parts (Fig. 3). Special API calls
are invoked (VIDIOC_QBUF and VIDIOC_DQBUF).
Queue operation puts the buffer in the driver’s incoming
queue. The buffer will be waiting for the driver to fill it
with data. Dequeue operation is used to retrieve
processed buffer (with video data) from the outgoing
queue9.

3.2. ROS package implementation

Originally, no ROS distribution was installed on the
robot’s OS. Therefore, we installed Ubuntu 14.04
compatible ROS Indigo distribution. The architecture of
the package consists of the following main parts (Fig. 4):

 ROS publisher node. Each camera
independently publishes its raw image data.

 V4L2 API layer. All low-level interactions with
video devices are handled by V4L2 API.

The ROS publisher node streams video data from a
selected camera to the assigned topic. A subscribed node
could be a server or some image processing node. Also,
the following node’s streaming parameters are used:

 Frames per second (fps). Video frames
publishing rate.

 Image resolution.

 ROS image format (i.e. “bayer_grbg8”).
 Device path (i.e. “/dev/video0”).

Captured image is distorted, therefore, camera
calibration is an essential part of our future work plans.

At the development stage, several issues were faced.
The most important one consisted in the inability to
determine video frame’s captured time, which are
important for stereo SLAM algorithms implementation.
V4L2 API gives the ability to determine frame’s captured
time by means of captured buffer structure’s parameter.
Originally, this parameter had an invalid state, and a
proper solution was obtained from the OpenCV GitHub
repository10. The timestamp data of the buffer structure
should be extracted after dequeuing and before the next
queueing stage.

All further experiments conducted on Servosila
Engineer’s OS.

The created ROS video streaming package shows
encouraging results (Fig. 5, 6). Note, that if there are no
subscribers to the video stream package’s topic CPU
usage tends to zero. Otherwise, if there is at least one

Fig. 5. Our ROS video streaming package’s CPU usage
statistics (measured by the pidstat utility in the idle and non-
idle modes)

Fig. 6. Average CPU usage of our ROS video streaming
package (in the idle and non-idle modes)

Fig. 4. Our ROS video streaming package architecture (ROS
publisher node, V4L2 API layer, raw image and camera
information topics)

222

Ramil Safin, Roman Lavrenov

© The 2018 International Conference on Artificial Life and Robotics (ICAROB2018), Feb. 1-4, B-Con Plaza, Beppu, Oita, Japan

subscriber, then our package consumes approximately
4% of CPU resources. It should be mentioned that no
image data conversion is performed, and video data is
published as a raw data by means of creating ROS image
message. Hence, we can decrease precious CPU usage
on a robot’s system, not wasting resource on image
conversion. Our package does not depend on the
OpenCV.

We reviewed other ROS video streaming packages.
The most interesting one seemed to be an OpenCV based
package11. Comparing CPU usage of this package to our
implementation we concluded that OpenCV based one
uses considerably more computational resources (Fig. 7).
If we stream from more cameras, then CPU usage will
increase and computational power will not be enough for
other applications. Also, it is important to note that in idle
mode, when there are no subscribers to the streaming
node, OpenCV based package continues to consume a lot
of CPU resources.

4. Conclusions and future plans

Streaming video from multiple cameras is an important
task. The key point is not only to get frames from camera
but also to decrease the usage of system resources. In this
paper, we introduced video streaming ROS package
implementation. This package demonstrated relatively
low consumption of system resources in either idle or
non-idle modes. As our long-term goal, we plan to
develop an RTP server, which will enable to stream video
data from several cameras in a real-time mode via

wireless connection. Our source code is available for
public access on the GitHub version control system12.

Acknowledgements

This work was partially supported by the Russian
Foundation for Basic Research (RFBR) and Ministry of
Science Technology & Space State of Israel (joint project
ID 15-57-06010). Part of the work was performed
according to the Russian Government Program of
Competitive Growth of Kazan Federal University.

References
1. J. Fuentes-Pacheco, J. Ruiz-Ascencio and J. M. Rendón-

Mancha, Visual simultaneous localization and mapping: a
survey, Artificial Intelligence Review (2015), v 43(1), pp.
55-81.

2. E. Magid, R. Lavrenov and A. Khasianov, Modified
spline-based path planning for autonomous ground vehicle,
Int. Conf. on Informatics in Control, Automation and
Robotics (2017), pp.132-141.

3. A. Karpov, S. Carbini, A. Ronzhin and J. Viallet, Two
similar different speech and gestures multimodal
interfaces, Multimodal User Interfaces (2008), pp. 155-
184.

4. E. Magid and T. Tsubouchi, Static balance for rescue robot
navigation: Discretizing rotational motion within random
step environment, Int. Conf. on Simulation, Modeling, and
Programming for Autonomous Robots (Springer, Berlin,
Heidelberg, 2010), pp. 423-435.

5. A. Buyval, I. Afanasyev and E. Magid, Comparative
analysis of ROS-based Monocular SLAM methods for
indoor navigation, 9th Int. Conf. on Machine Vision (2017),
pp. 103411K-103411K-6.

6. M. Sokolov, R. Lavrenov, A. Gabdullin, I. Afanasyev and
E. Magid, 3D modelling and simulation of a crawler robot
in ROS/Gazebo, 4th Int. Conf. on Control, Mechatronics
and Automation (2016), pp. 61-65.

7. L. Yinli, Y. Hongli, and Zh. Pengpeng. The
implementation of embedded image acquisition based on
V4L2, IEEE Int. Conf. on Electronics, Communications
and Control (2011), pp. 549-552.

8. A. Lukin and D. Kubasov, High-quality algorithm for
Bayer pattern interpolation. Programming and Computer
Software 30.6 (2004), pp. 347-358.

9. V4L2 manual; https://linuxtv.org/downloads/v4l-dvb-
apis/uapi/v4l/v4l2.html

10. OpenCV GitHub Issues, timestamp issue;
https://github.com/opencv/opencv/issues/8763

11. GitHub video_stream_opencv ROS package:
https://github.com/ros-drivers/video_stream_opencv

12. LIRS video streaming ROS package; https://github.com/
chupakabra1996/lirs_ros_video_streaming

Fig. 7. Average CPU usage of OpenCV based ROS package in
comparison with our implementation (in the idle and non-idle
modes) (using pidstat utility)

223

