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Abstract 

Due to the advances in computer vision, robotics, and so forth, it has become increasingly apparent that the study of 
three-dimensional pattern processing should be very important. Thus, the study of three-dimensional automata as the 
computational model of three-dimensional information processing has been significant. During the past about thirty 
years, automata on a three-dimensional tape have been obtained. On the other hand, it is well-known that whether or 
not the pattern on a two- or three-dimensional rectangular tape is connected can be decided by a deterministic one-
marker finite automata. As far as we know, however, it is unknown whether a similar result holds for recognition of 
the connectedness of patterns on three-dimensional arbitrarily shaped tape. In this paper, we deal with the 
recognizability of three-dimensional patterns, and consider the recognizability of three-dimensional connected tapes 
by alternating Turing machines and arbitrarily shaped tapes by k marker finite automata. 
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1. Introduction 

Recently, there have been many interesting 
investigations on digital geometry [2]. These works form 
the theoretical foundation of digital image processing. 
Among them, the problem of connectedness is one of the 
most interesting topics. For instance, Yamamoto, Morita 
and Sugata showed that a three-dimensional 
nondeterministic one-marker automaton can recognize 
connected tapes. In the case of L(m) space-bounded five-
way three-dimensional deterministic Turing machine, 
they  proved that space m2logm is necessary and 
sufficient amount for recognizing connected tapes of size 
m×m×m [3]. Nakamura and Rosenfeld showed that 
three-dimensional connected tapes are not recognizable 

by any three-dimensional deterministic or 
nondeterministic finite automaton. By the way, it is well 
known that two-dimensional digital pictures have 4- and 
8-connectedness, and three-dimensional digital pictures 
have 6- and 26-connectedness. It is also known that 
various topological properties can be defined by making 
use of these connectedness. For  example, Nakamura and 
Aizawa proposed  a new topological property of three-
dimensional digital pictures ―  the interlocking 
component which is a chainlike connectivity. They 
showed that three-dimensional deterministic one-marker 
automaton cannot detect interlocking components in a 
three-dimensional digital picture [3]. Moreover, in [3], 
Sakamoto, et al. proposed various new three-dimensional 
automata, and studied several their properties. In general, 
however, to recognize three-dimensional connectedness 
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seems to be much more difficult than the two-
dimensional case, because of intrinsic characteristics of 
three-dimensional pictures.  

In this paper, we consider about recognizability of 
three-dimensional patterns. First, we deal with the 
recognizability of three-dimensional connected cubic 
tapes by three-dimensional alternating automata. Next, 
we consider whether or not the pattern on a three-
dimensional arbitrarily shaped tape is connected can be 
decided by a deterministic multi-marker finite automaton.  

2. Preliminaries 

Definition 2.1. Let Σ be a finite set of symbols. A three-
dimensional tape over Σ is a three-dimensional 
rectangular array of elements of Σ. The set of all three-
dimensional tapes over Σ is denoted by Σ(3). Given a tape 
x ∈ Σ(3), for each integer j (1 ≤ j ≤ 3), we let lj(x) be the 
length of x along the jth axis. The set of all x ∈ Σ(3) with 
l1(x)=n1, l2(x)=n2, and l3(x)=n3 is denoted by 
Σ(n1,n2,n3). When 1 ≤ ij ≤ lj(x) for each j (1 ≤ j ≤ 3), let 
x(i1,i2,i3) denote the symbol in x with coordinates 
(i1,i2,i3) . Furthermore, we define x[(i1,i2,i3), (i0 1,i0 
2,i0 3)], when 1 ≤ ij ≤ i0 j ≤ lj(x) for each integer j (1 ≤ j 
≤ 3), as the three-dimensional input tape y satisfying the 
following (1) and (2): (1) for each j (1≤j ≤3), lj(y) = i0 j 
−ij + 1; (2) for each r1, r2, r3 (1≤r1 ≤l1(y), 1≤r2 ≤l2(y), 
1≤r3 ≤l3(y)), y (r1,r2,r3)=x (r1+i1−1, r2+i2−1, r3+i3−1). 
(We call x[(i1,i2,i3), (i0 1,i0 2,i0 3)] the [(i1,i2,i3), (i0 1, 
i0 2,i0 3)]-segment of x.) For each x∈Σ(n1,n2,n3) and 
for each 1≤i1 ≤n1, 1≤i2 ≤n2, 1≤i3 ≤n3, x[(i1, 1, 1), (i1, 
n2, n3)], x[(1, i2, 1), (n1, i2, n3)], x[(1, 1, i3), (n1, n2, 
i3)], x[(i1, 1, i3), (i1, n2, i3)], and x[(1, i2, i3), (n1, i2, 
i3)] are called the i1th (2-3) plane of x, the i2th (1-3) 
plane of x, the i3th (1-2) plane of x, the i1th row on the 
i3th (1-2) plane of x, and the i2th column on the i3th (1-
2) plane of x, are denoted by x (2-3)i1, x (1-3)i2, x(1-2) 
i3, x[i1,∗,i3], and x[∗,i2,i3], respectively[3]. 
 
Definition 2.2. A three-dimensional alternating Turing 
machine (denoted by 3-ATM) is a 10-tuple M = (Q, q0, 
U, E, S, F, Σ, Γ, δ), where (1) Q = U ∪E∪S is a finite 
set of states, (2) q0 ∈Q is the initial state, (3) U is the set 
of universal states, (4) E is the set of existential states, (5) 
F ⊆Q is the set of accepting states, (6) Σ is a finite input 
alphabet (# ∉Σ is the boundary symbol), (7) Γ is a finite 
storage tape alphabet containing the special blank symbol 
B, (8) δ ⊆(Q×(Σ∪{#})×Γ)×(Q×(Γ−{B})×{east, west, 
south,north,up,down,no move}×{left,right,no move}) is 
the next move relation. As shown in Fig.2, M has a read-
only cubic input tape with boundary symbols #’s (# ∉

Σ) and one semi-infinite storage tape, initially filled with 
the blank symbols. M begins in state q0. A position is 
assigned to each cell of the input tape and the storage tape, 
as shown in Fig.1. A step of M consists of reading one 
symbol from each tape, writing a symbol on the storage 
tape, moving the input and storage tape heads in specified 
directions, and entering a new state, according to the next 
move relation δ [3]. 
 

 
Fig.1:Three-dimensional alternating Turing machine. 

 
Definition 2.3. A three-dimensional k marker finite 
automaton M(k) is defined by the six-tuple M = 
(Q,q0,F,Σ,{+,−},δ), where (1) Q is a finite set of states; 
(2) q0∈Q is the initial state; (3) F⊆Q is the set of 
accepting states; (4) Σ is a finite input alphabet (#/ ∈Σ 
is the boundary symbol); (5) {+,−}is the pair of signs of 
presence and absence of the marker; and (6) δ: 
(Q×{+,−})×((Σ ∪ {#})×{+,−}) → 2(Q×{+,−})×((Σ ∪
{#})×{+,−})×{east,west,south,north,up,down,no move} 
) is the next-movefunction, satisfying the following: For 
any q,q0∈Q, any a,a0∈Σ, any u,u0,v, v0∈{+,−}, and 
any d ∈  {east,west,south,north,up,down,no move}, if 
((q0,u0),(a0,v0),d) ∈ δ  ((q,u),(a,v)) then a=a0, and 
(u,v,u0,v0)∈{(+,−,+,−),(+,−,−,+),(−,+,−,+), (−,+,+,−), 
(−,−,−,−)}. We call a pair (q,u) in Q×{+,−} an extended 
state, representing the situation that M holds or does not 
hold the marker in the finite control according to the sign 
u = + or u =−, respectively. A pair (a,v) in Σ×{+,−} 
represents an input tape cell on which the marker exists 
or does not exsit according to the sign v = + or v =−, 
respectively. Therefore, the restrictions on δ above imply 
the following conditions. (A) When holding the marker, 
M can put it down or keep on holding. (B) When not 
holding the marker, and (i) if the marker exists on the 
current cell, M can pick it up or leave it there, or (ii) if 
the marker does not exist on the current cell, M cannot 
create a new marker any more (see Fig.2) [3]. 
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Fig.2:Three-dimensional k marker finite automaton. 

3.  Recognizability of Connected Tapes by 
Three-Dimensional Alternating Turing machines 

Definition 3.1. Let x be in {0,1}(3). A maximal subset, P 
of N3 satisfying the following conditions is called a 1-
component of x. (1)For any (i1, i2, i3)∈P, we have 1≤i1 
≤l1(x), 1≤i2 ≤l2(x),1≤i3 ≤l3(x), and x(i1,i2,i3)=1. (2)For 
any (i1, i2, i3), (i0 1, i0 2, i0 3)∈P, there exists a 
sequence (i1,0, i2,0, i3,0), (i1,1, i2,1, i3,1),···, (i1,n, i2,n, 
i3,n) of elements in P such that (i1,0, i2,0, i3,0) = (i1, i2, 
i3), (i1,n, i2,n, i3,n) = (i0 1, i0 2, i0 3), and|i1,j 
−i1,j−1|+|i2,j −i2,j−1|+|i3,j −i3,j−1|≤1 (1≤j ≤ n). A tape x
∈{0,1}3 is called connected if there exists exactly one 
1-compnent of x. We denote the set of all the cubic 
connected tapes by Tc. It is shown in [3] that a 3-ATM 
can accept Tc. From this fact and from the fact L[FV 3-
AFA] ⊇L[3-AFA] by using a technique similar to that in 
[15], the following theorem holds. (3-AFA means 3-
ATM without the storage tape and the storage-tape head, 
FV3-AFA means 3-AFA which cannot move up.)  
Theorem 3.1. Tc ∈L[FV 3-AFA]. It is shown in [3] that 
logm space is necessary and sufficient for FV 3-ATM’s 
to accept Tc. We below show the necessary and sufficient 
space for FV 3-SUTM’s to accept ̄  Tc (=the complement 
of Tc). 
Theorem 3.2. m2 space is necessary and sufficient for FV 
3-ATM’s to accept ¯ Tc. 
Proof: (The proof of sufficiency) It is shown in [3] that 
Tc is accepted by a deterministic one-way 
parallel/sequential array acceptor (DOWPS), and it is 
shown that L[DOWPS] = L[TR2-DTM(m)] (TR2-
DTM(m) means m space-bounded three-way two-
dimensional deterministic Turing machine). From these 
facts and the fact that L[TR2-DTM(m)] is closed under 
complementation, it follows that ¯ Tc is in 

L[TR2DTM(m)], and thus in L[TR2-SUTM(m)]. (TR2-
SUTM(m) means m space-bounded three-way two-
dimensional synchronized alternating Turing machine 
with only universal states). By applying the same idea of 
such a two-dimensional case, we can easily get the fact 
that ¯ Tc is in L[FV 3-SUTM(m2)]. (The proof of 
necessity) Suppose that there is an FV 3-SUTM(L(m)) M 
accepting ¯ Tc, where L(m) = o(m2). We assume without 
loss of generality that M enters an accepting state only on 
the bottom boundary. Let T0 c ={x ∈

{0,1}(4m+1,4m+1,4m+1) |m≥1 & ∀i1(1≤i1 ≤m + 1)∀
i2(1≤i2 ≤2m + 1) [ x [(2i2 −1, 1, 2i1 −1), (2i1 −1, 4m−2i1 
+ 3, 2i1 −1)], x[(2i2 −1, 1, 4m−2i1 + 3), (2i2 −1, 4m−2i1 
+ 3, 4m−2i1 + 3)]}, x[(2i1 −1, 4m−2i1 + 3, 2i1 −1), (2i2 
−1, 4m−2i1 + 3, 4m−2i1 + 3)]∈{1}(3) ] &∀i2(1≤i2 
≤2m) [ x [(2i2, 1, 2m + 1), (2i2, 2m + 1, 2m + 1) ]∈
{1}(3)] &∀i1(1≤i1 ≤2m)∀i2(1≤i2 ≤2m + 1) [ x(2i2 −1, 
1, 2i1) = x(2i2 −1,1,4m−2i1 + 2) ] & (the other part of x 
consists of 0’s)}, where we define ¯0 = 1 and ¯1 = 0. 
4).Clearly T0 c ⊆ Tc. Let s and t be the numbers of states 
(of the finite control) and storage tape symbols of M, 
respectively. For each m(m≥1), let V(m) ={x∈T0 c 
|l1(x) = l2(x) = l3(x) = 4m+1}. For each x in V(m), let 
S(x) and C(x) be sets of configurations of M defined as 
follows. S(x) = {((i1, i2, 2m + 1), (q, α, k)) | there exists 
a computation path IM(x) `∗ M (x, ((i1, i2, 2m), (q0, α0, 
k0)))`M (x, ((i1, i2, 2m + 1), (q, α, k))) of M on x (that is, 
(x, ((i1, i2, 2m+1), (q, α, k))) is an ID of M just after the 
point where the input head left the (2m+1)th plane of x)}, 
C(x) ={{ρ1,ρ2}|ρ1 and ρ2 are configurations in S(x) such 
that (i)in case of ρ1 = ρ2, there exists a sequential 
computation of M which starts with ID(x,ρ1) and either 
terminates in a rejecting ID, or enters an infinite loop, and 
(ii)in case of ρ1 ≠ ρ2, there exist two sequential 
computations of M which start with ID’s(x, ρ1) and (x, 
ρ2), respectively, and terminate in sync ID’s with 
different sync elements}. (Note that, for each x in V(m), 
C(x) is not empty, since x is not in ¯ Tc, and so not 
accepted by M.) Then the following proposition must 
hold. 
Proposition 3.1. For any two different tapes x, y∈V(m), 
C(x)∩C(y)= φ. 
[ Proof: For otherwise, suppose that x6= y(x, y ∈
V(m)), C(x)∩C(y)6= φ, and {ρ1, ρ2} ∈C(x)∩
C(y). Let z (with l1(x)=l2(x)=l3(x)=4m + 1) be the tape 
such that (i)z [(1, 1, 1), (4m + 1, 4m + 1, 2m + 1)] = 
x[(1,1,1), (4m + 1, 4m + 1, 2m + 1)], and (ii)z [(1, 1, 2m 
+ 2), (4m + 1, 4m + 1, 4m + 1)] = y[(1, 1, 2m + 2), (4m 
+ 1, 4m + 1,4m + 1)]. Since {ρ1,ρ2}∈ C(x), there exist 
computation paths IM(z) ┠∗ M (z,ρ1) and IM(z) ┠∗ M 
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(z,ρ2). Since{ρ1,ρ2}∈C(y), in case of ρ1=ρ2, there 
exists a sequential computation of M which starts with 
the ID (z,ρ1) and either terminates in a rejecting ID, or 
enters an infinite loop, and in case of ρ1 6= ρ2, there 
exist two sequential computations of M which start with 
ID’s (z, ρ1) and (z, ρ2), respectively, and terminate in 
sync ID’s with different sync elements. This means that 
z is not accepted by M. This contradicts the fact, that z 
is in ¯Tc = T(M).               □] 
Proof of Theorem 3.2(continued): Let p(m) denote the 
number of pairs of possible configurations of M just after 
the point where the input head left the (2m+1)th planes 
of tapes in V(m). Then p(m) =KC 2+ K where K = s(4m + 
3)2 L(4m + 1)tL(4m+1). On the other hand, |V(m)| = 
2m(2m+1). Since L(m) = o(m), we have|V(m)|≥ p(m) for 
large m. Therefore, it follows that for large m there must 
be two different tapes x, y in V(m) such that C(x)∩C(y)
≠φ. This contradicts Proposition 6.1 and completes the 
proof of necessity.               □ 

4. Recognizability of Three-Dimensional 
Arbitrarily Shaped Tapes by k Marker Finite 
Automata 

Let Σ(3) be a set of points in the three-dimensional 
Euclidean space with integer coordinates. Each point in 
Σ(3) is called a vertex, Each unit-length segment 
connecting two vertices is called an edge. Each region of 
unit area enclosed by twelve edges is called a voxel. Each 
voxel can have an input symbol ‘0’ or ‘1’, or a boundary 
symbol ‘#’. A voxel is called 0-voxel (1-voxel, or #-
voxel) if it has symbol 0 (1, or #). Two-voxels are 6-
adjacent (or 27-adjacent) if they share a common edge (or 
a common vertex) [3]. A 6-adjacent (or 27-adjacent) path 
is a sequence of voxels c(1),c(2),...,c(i) such that for each 
1 ≤ j ≤ i−1, c(j) and c(j + 1) are 6-adjacent (or 27-
adjacent). A three-dimensional arbitrarily shaped 
pathwise-connected tape (p−tape) T is a set of 0, 1-voxels 
surrounded by #-voxels, where any two 0,1-voxels in T 
are connected by a 6-adjacent path with only 0,1-voxels 
in T. (Note that T can contain some ‘holes’ in its inside.) 
the pattern P on a p-tape T is the set of all 1voxels that 
appear there. For the pattern P on a p-tape, a 1-component 
C is any maximal set of 1-voxels such that any 1-voxels 
in C are connected by a 6-adjacent path with only 1-
voxels in C. A pattern P is connected if and only if any 
two 1-voxels are connected by a 6-adjacent path with 
only 1-voxels in P. That is, P is connected if and only if 
there exists only one 1-component. A k-marker finite 
automaton M(k) consists of a finite control with a read-
only input head and k (labelled) markers operating on a 

p-tape T. M(k) is started on a 0,1-voxel in its start state 
with carrying its markers . The markers can be placed on 
or collected back to the finite control from only the voxel 
the input head is currently scanning. In each step, M(k) 
can change its internal state, place a marker ‘carried’ by 
the finite control (or collect back a marker (if it exists) to 
the finite control) on (or from) the voxel the input head is 
currently scanning, and move the input head to a 6-
adjacent cell, according to the current state, the symbol 
and the presence of marker on the voxel currently 
scanned by the input head. M(k) is called deterministic if 
its next-move function is deterministic, otherwise it is 
called nondeterministic. We assume that M(k) can visit 
any #-voxel which is 6-adjacent to some 0,1-voxel in T, 
but can never fall off the tape T beyond these #-cells. 

By using the same technique as in the proof of Theorem 
3.1 in [1], we get the result.  
Theorem 4.1. whether or not the pattern on a p-tape is 
connected can be decided by a deterministic three 
marker finite automaton.  

It is shown in [1] that there is no deterministic one 
marker finite automaton which is able to search all mazes 
(i.e., p-tapes). Moreover, it is shown in [3] that the set of 
all three-dimensional connected tapes is not recognizable 
by any three-dimensional nondeterministic multi-inkdot 
finite automaton (an inkdot machine is a conventional 
machine capable of dropping an inkdot on a given input 
tape for a landmark, but unable to further pick it up[3]). 
This result means that whether or not the pattern on a p-
tape is connected cannot be decided by any deterministic 
one marker finite automaton. 

5. Conclusion 

 In this paper, we considered about recognizability of 
three-dimensional patterns by some three-dimensional 
automata. It is an open problem whether the set of all the 
three-dimensional connected tapes is not accepted by any 
three-dimensional nondeterministic Turing machine with 
spaces of size smaller than logm, and by any three-
dimensional alternating one marker finite automaton 
with only universal states.  
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