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Abstract 

This paper is concerned with the fixed-time consensus tracking problem for multi-AUV (autonomous underwater 
vehicle) systems with uncertain parameters and external disturbances. Firstly, a fixed-time terminal sliding mode is 
proposed, which can avoid the singularity problem. Then, a continuous distributed consensus tracking control law 
is designed based on Neutral Network approximation technique, which can guarantee the consensus tracking errors 
converge to the desired regions in fixed time. A simulation example is given to show the effectiveness of proposed 
methods. 
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1. Introduction 

Distributed cooperative control of multiple AUVs has 
been paid to much attention due to its potential 
applications in oceanographic surveys and deep sea 
inspections [1]. The distributed cooperative control for 
multi-AUV systems has been investigated by using the 
backstepping technique [2] and the adaptive control 
approach [3]. However, the protocols proposed in them 

can only guarantee the closed-loop system is 
asymptotically stable. For the distributed cooperative 
control, one significant requirement is the fast 
convergence rate. Compared with the asymptotic 
control approaches, the finite-time control approaches 
can not only provide fast convergence rate but also 
provide higher tracking precision and better disturbance 
rejection ability [4]. Therefore, many finite-time control 
laws are proposed for various multi-agent systems in the 
past few years [5]–[7]. However, the settling time can 
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be estimated dependent on the initial conditions of 
systems in there. In practical applications, we desire that 
the settling time is estimated independent on the initial 
conditions of systems. In this paper, we will further 
investigate the adaptive finite-time consensus tracking 
problem for multiple AUVs with uncertain dynamics 
using fixed-time terminal sliding mode. 

2. Systems Description 

This paper considers the networked multiple AUV 
system with n following AUVs and one virtual leader, 
and the communications among them are described by 
a digraph G . The definitions and descriptions of graph 
G  are given in [7] and [9], which is omitted for brevity. 
Assume that all the following AUVs have fixed 
attitudes. The translational dynamics of the i-th AUV 
( i V ) are given as [10]: 

 i i i i

i i i i i i i i i

p R v

M v D v v g w
        (1)       

where [ , , ] , [ , , ]T T
i i i i i i i ip x y z  denote position 

and attitude vectors in the inertial reference frame, 
respectively, i iR is the kinematic transformation 
matrix, [ , , ]T

i i i iv u v is translational velocity vector in 
the body-fixed reference frame, iM is the inertia matrix, 

i iD v is the damping matrix, i ig  is there storing 
force vector, 3

i is the control force vector, 
and 3

iw is the disturbance force vector. iM , i iR , 
i iD v , i ig  are defined in [10]. In this paper, we 

assume that i iD v  and i ig have uncertain 
parameters. Note that T

i iR R I .Denote 3
dp as the 

state vector of virtual leader and dp , dp are all assumed 
to be smooth, bounded and known functions.  
Assumption 1. G has a spanning tree, and the leader 
node is the root node. 

3. Main results 

3.1. Fixed-time terminal sliding mode (FTTSM) 

Denote 
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1

2
1

n
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j
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i ij i j i i d
j

e a p p b p p

e a p p b p p
           (2)    

Then, we have 1 1 2 2,e H I e H I , where 

1 11 1[ , , ]T T T
ne e e ,

2 21 2[ , , ]T T T
ne e e ,

1 11 1[ , , ]T T T
n

, 
2 21 2[ , , ]T T T

n
,

1i i dp p ,
2i i dp p . 

Now, define the FTTSM vector as 1[ , , ]T T T
ns s s , 

where 3
1 2 3[ , , ]T

i i i is s s s is given by 

 2 1i i i is e e                        (3) 

with 1 1 1 1 2 1 3[ , , ]T
i i i i i i i ie e e e ,and  

11 1

1 1 2 1

1 1

2
1 1 2 1 1

sig sig sig ,

if s 0 or s 0,

sig , if s 0,

km n

i i i i

i i i i i

i i i i i i

e e

e e

l e l e e

    (4)                     
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mT

i i i i i is s s s s e
1 1
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m n
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From (3), we can obtain the following equation  

                         2 2i i i i is s e e                     (5) 

From the definition of 2ie , we further have 

2
1

n

i i i i ij j i d
j

e d b p a p b p            (6)       

and from (1), we can obtain  
1 1

i i i i i i i i i ip h R M R M w            (7)   

where 1 1
i i i i i i i i i ih R v R M D v R M g . Assume that 

1 ,i i i i i i i id b R M w w w is an unknown constant. 
Then, substituting (6) into (5) yields  

1 1
i i i i i i i i i i i i i i is s d b R M d b R M w

(8)  

where 2
1

.
n

i ij j i d i i i i i
j

a p b p e d b h  
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3.2. Control law design 

From the approximation property of RBF Neutral 
Networks (NNs), we have 

 T
i i i i iW Z                             (9) 

where [ , , , , , , , ]T T T T T T T T T
i i i j j j d d dZ p p p p p p p p and 

i i , 0i is a constant. Denote ˆi as the estimate 
of 2

i iW , then the adaptation law is designed as 

 2
ˆ ˆ2

2
T Ti

i i i i i i i i
i

s s
h

                  (10)   

where , ,i i ih are designed positive constants. 
Theorem 1.Suppose that Assumption 1 holds for system 
(1), then we can choose the control law 

2 2

1 2 2

1 1 ˆsig sig
2

m nT T
i i i i i i i i i i i

i i i

M R s s s
d b h

 (11) 

where 1 2 2 20, 0,0 1, 1i i m n , such that 
is converges into the region 

 
 

in fixed time, the local neighborhood state errors 
1ie and 2 , 1,2,3ie converge into the regions 
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Proof. Denote ˆi i i , and choose the Lyapunov 
function as 

 2

1

1 1 1
2 2

n
T

i
i i

V S S                      (12) 

we have 

1

1 1 1 1

n n n n
T T T
i i i i i i i i i i i i

i i i i
V s s s d b R M w s s    

(13) 
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2 ,2
2
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1 1 1 1
2 2 22
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TT T T T
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Substituting (10), (11), (14) into (13) yields 
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Using the similar proof as in [9], we have 
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Suppose that there exists a compact set  such that 
|i i , then we have 
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From (16) and (17), we can further obtain  

2 2

2

1 1
2 2

1 2 1
2

1

2 1

n
m n

nV V V        (18) 

It can be seen from Lemma 2 in [8] that the system 
(12) is practical fixed-time stability. Moreover, is will 
converge into the region i ss in fixed settling time. 
The next proofs are similar with that of [7] and [9], thus 
are omitted for brevity. 

4. Simulations 

We consider a direct network with three AUVs and a 
virtual leader, the matrices L and B are described as: 

 
0 0 0 1 0 0
1 1 0 , 0 0 0
1 0 1 0 0 0

L B   

We assume that all the AUVs have the same 
structure and the model parameters 
are diag{175.4,140.8,140.8},iM {120 + 90 ,i iD u  
90 90 ,150iv +90 }, , ,5 10 12i i i i  
[10]. The response curves under control law (11) are 
shown in Fig. 1. Note that the control law (11) can 
ensure the closed-loop system has desired robustness. 

5. Conclusions 

This paper studied the fixed-time consensus tracking 
control of Multiple AUVs. A FTTSM based adaptive 
chattering-free control law was designed, which could 
guarantee the closed-loop system had desired fixed-time 
tracking performance. 
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Fig. 1.   Response curves of pd and pi (i=1,2,3) under control 
law (11). 
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