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Abstract 

We propose an approximate analysis method for Navier-Stokes Equation (NSE) based on the similarity between 
NSE and Advection Diffusion Equation (ADE). In this paper, we present an analytical solution and a Green 
function (integral kernel) which are obtained from the diffusion equation over uniform flow field (or velocity field) 
in three dimensional (3D) boundless region under arbitrary initial condition. The solution shows that the diffusion 
process is a Markov one and that the Green function becomes a Gaussian-like exponential function. 
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1. Introduction 

Navier-Stokes Equation (NSE) is well known as 
fundamental one in Fluid Mechanics1. Because the exact 
analytical solution of NSE is not yet obtained, we have 
to use numerical computation for the solution under the 
arbitrary initial and boundary conditions.  
For the numerical computation method, Difference 
Method, Finite Element Method and Boundary Element 
Method are well known. However, as for the Difference 
Method, it tends to be difficult to deal with complicated 
boundary conditions. In addition, the method has to 
satisfy the Courant condition to obtain the stable 
computation solution.  
On the other hand, the Finite Element Method takes 
much time to solve simultaneous equations appeared in 
the method, and the Boundary Element Method has a 

problem in the computation precision for the analysis of 
viscous flow of high Reynolds number.  
Even if we obtain the result by using such numerical 
computations, those methods take much time and the 
results are involved by not a little computation error.  
So, in order to reach the more accurate solution, it 
would be desirable to have an analytical approximate 
solution that is as much as close to the exact one.  
In order to obtain such an analytical approximate 
solution, we focus on the similarity between the NSE 
and Advection Diffusion Equation (ADE). And in this 
paper, we derive the exact analytical solution of the 
ADE over uniform flow field (or velocity field) in three 
dimensional (3D) boundless region under arbitrary 
initial condition2-4.  
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2. Advection Diffusion Equation 

Let C  be a fluid of density (or density of material), and 
let zyx DDD ,,  denote the diffusion coefficient in 

zyx ,, axis direction, respectively. Similarly, let wvu ,,  

denote the flow velocity in zyx ,, axis direction, 

respectively. Moreover, let   and Q be the attenuation 

coefficient that is spatially uniform and the load 
generation rate function, respectively.  
 
The partial differential equation of the ADE is shown as 
Eq.(1).  
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Here we introduce the Dirac’s   function as in the 
following (2). 
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The initial condition and the load generation rate 
function are shown in Eq.(3) and Eq.(4), respectively. 
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Next, we think of the Fourier transform for C in 3 

dimensional space. Then, let C
~

be the Fourier 

transformed C, and we have the following Eq.(5) and 
Eq.(6). 
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From the Fourier transform (FT) of the left hand side 
(LHS) and right hand side (RHS) in Eq.(1), we have the 
following Eq.(7) and Eq.(8), respectively. 
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As a result from the above Eq.(7) and Eq.(8), the 
Fourier transform of Eq.(1) becomes as follows. 
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  )(),,,( 222 rwqvpujDrDqDptrqp zyx  

  dddetQtrqp rqpj )(),,,(),,,( 











    

 
Since Eq.(9) is a linear differential equation of first 
order with respect to time t, using an infinitesimal time 
parameter )0( t , the solution is represented as 
shown in Eq.(10).  
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where 

0

~
C is represented as the following equation in the 

same way as  , 
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Next, we apply the inverse Fourier transform to Eq.(10). 
Let the first and second term of the inverse Fourier 
transform of right hand side be ),,,(1 tzyxC  and 

),,,(2 tzyxC , respectively.  

And, let X denote 
t

Xds

0
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…(11) 
 
First, we perform the integration with respect to rqp ,, , 
then we have the following Eq.(12) 
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…(12) 
As for the 2C , we have the following equations. 
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Therefore, we have 
 
 
 
 
 
 
 
 
 

…(13) 

By returning the notation “ ” to the original 

integration representation in Eq.(12) and Eq.(13), we 
have 
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(15) 
Because 21 CCC  , we have the solution as follows. 
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3. Conclusion 

In this paper, we have presented the exact analytical 
solution of the ADE over uniform flow field (or velocity 
field) in three dimensional (3D) boundless region under 
arbitrary initial condition.  
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