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Abstract 

A multi-marker automaton is a finite automaton which keeps marks as ‘pebbles’ in the finite control, and cannot rewrite any input 
symbols but can make marks on its input with the restriction that only a bounded number of these marks can exist at any given time. 
An improvement of picture recognizability of the finite automaton is the reason why the marker automaton was introduced. That is, a  
one-marker automaton can recognize connected picture. This automaton has been investigated in the two- or three-dimensional case. 
As is well known among the researchers of automata theory, one-marker automata are equivalent to ordinary finite state automata. In 
other words, there is no working space usage such as Turing machines to calculate the space complexities. In this paper, we deal with 
four-dimensional one-marker automata in terms of the space complexities that seven-way four-dimensional Turing machines, which 
can move east, west, south, north, up, down, or in the future, but not in the past on four-dimensional rectangular input tapes, suffice to 
simulate one-marker automata. 

Keywords: computational complexity, finite automaton, marker, simulation, Turing machine, upper bounds. 

1. Introduction 

A multi-marker automaton is a finite automaton 
which keeps marks as ‘pebbles’ in the finite control, and 
cannot rewrite any input symbols but can make marks 
on its input with the restriction that only a bounded 
number of these marks can exist at any given time[1]. 
An improvement of picture recognizability of the finite 
automaton is the reason why the marker automaton was 

introduced. That is, a two-dimensional one-marker 
automaton can recognize connected pictures. This 
automaton has been widely investigated in the two- or 
three-dimensional case [2]. 
 As is well known among the researchers of automata 
theory, one-dimensional one-marker automata are 
equivalent to ordinary finite state automata. In other 
words, there is no need of working space usage for 
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one-way Turing machines to simulate one-marker 
automata, as well as finite state automata. 
  In the two-dimensional case, the following facts are 
known : the necessary and sufficient space for 
three-way two-dimensional deterministic Turing 
machines TR2-DTM’s to simulate two-dimensional 
deterministic (nondeterministic) finite automata 
2-DFA’s (2-NFA’s) is mlogm (m2) and the 
corresponding space for three-way two-dimensional 
nondeterministic Turing machines TR2-NTM’s is m (m), 
whereas the necessary and sufficient space for 
three-way two-dimensional deterministic Turing 
machines TR2-DTM’s to simulate two-dimensional 
deterministic (nondeterministic) one-marker automata 
2-DMA1’s (2-NMA1’s) is 2mlogm ( 2 ) and the 
corresponding space for TR2-NTM’s is mlogm (m2), 
where m is the number of columns of two-dimensional 
rectangular input tapes. 

In the three-dimensional case, the following facts are 
known : the necessary and sufficient space for five-way 
three-dimensional deterministic Turing machines 
FV3-DTM’s to simulate three-dimensional deterministic 
(nondeterministic) finite automata 3-DFA’s (3-NFA’s) 
is m2logm (m3) and the corresponding space for 
five-way three-dimensional nondeterministic Turing 
machines FV3-NTM’s is m2 (m2), whereas the necessary 
and sufficient space for five-way three-dimensional 
deterministic Turing machines FV3-DTM’s to simulate 
three-dimensional deterministic (nondeterministic) 
one-marker automata 3-DMA1’s (3-NMA1’s) is 2lmloglm 
(2 ) and the corresponding space for FV3-NTM’s is 
lmloglm (l2m2), where l(m) is the number of rows 
(columns) on each plane of three-dimensional 
rectangular input tapes. 
  In this paper, we deal with four-dimensional 
one-marker automata in terms of the space complexities 
that seven-way four-dimensional Turing machines 
suffice to simulate four-dimensional one-marker 
automata. 

2. Preliminaries 

An ordinary finite automaton cannot rewrite any 
symbols on input tape, but a marker automaton can 
make a mark on the input tape. We can think of the 
mark as a ‘pebble’ that M puts down in a specified 

position. If M has already put down the mark, and wants 
to put it down elsewhere, M must first go to the position 
of the mark and pick it up. Formally, we define it as 
follows. 
Definition 2.1. A four-dimensional nondeterministic 
one-marker automaton (4-NMA1) is defined by the 
6-tuple M = (Q, q0, F, Σ, { +, - }, δ), where 
(1) Q is a finite set of states ; 
(2) q0 ∈ Q is the initial state ; 
(3) F ⊆ Q is the set of accepting states ; 
(4) Σ is a finite input alphabet (# ∉ Σ is the boundary 
symbol); 
(5) {+,－} is the pair of signs of presence and absence 
of the marker ; and 
(6) δ : ( , )  ((Σ ∪ # ) , )  ↦ 	  
2 ,  (( Σ ∪ # ) , ) 	 east, west,
south, north, up, down, future, past, no	move  is 
the next-move function, satisfying the following : For 
any q, q’ ∈ Q, any a, a’ ∈ Σ, any u, u’, v, v’ ∈ , , 
and any d 	∈ east,west, south, north, up, down,
future, past, no	move , if ((q’, u’), (a’, v’),d) ∈ ((q,v), 
(a,v)) then  and , , , ∈ , , , , 
	 , , , , , , , , , , , , , , , . 
  We call a pair ,  in ,  an extended 
state, representing the situation that M holds or does not 
hold the marker in the finite control according to the 
sign 	  or 	 , respectively. A pair ,  in 
Σ ,  represents an input tape cell on which the 
marker exists or does not exist according to the sign 

	  or 	 , respectively. 
  Therefore, the restrictions on  imply the following 
conditions. (i) When holding the marker, M can put it 
down or keep on holding. (ii) When not holding the 
marker, and ① if the marker exists on the current cell, 
M can pick it up or leave it there, or ② if the marker 
does not exist on the current cell, M cannot create a new 
marker any more. 
Definition 2.2. Let Σ be the input alphabet of 4-NMA1 
M. An extended input tape  of M is any 
four-dimensional tape over Σ ,  such that for 
some ∈ Σ , 
(i) for each 1 4 , , 
(ii) for each 1 , 1 , 
1 , and 	 1 , , ,
, = , , , , 	for some ∈ , . 
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Definition 2.3. A configuration of 4-NMA1 M = (Q, q0, 

F, Σ, { +, - }, δ) is a pair of an element of Σ ∪ #
,  and an element of ∪ 0

, . The first component of a configuration 
, , , , , ,  represents the extended 

input tape of M. The second component , , ,  
of  represents the input head position. The third 
component ,  of  represents the extended state. 
An element of 	is called a semi-configuration of M. 
If q is the state associated with configuration c, then c is 
said to be an accepting configuration if q is an accepting 
state. The initial configuration of M on input x is 

, 1,1,1,1 , , ,  where  is the 
special extended input tape of M such that 

, , ,  = , , , ,  for each 
, , , 	 1 , 1 , 1

, 1 .  If M moves 
deterministically, we call M a four-dimensional 
deterministic one-marker automaton (4-DMA1). 
Definition 2.4. Given a 4-NMA1

 M = (Q, q0, F, Σ, {+, -}, 
δ), we write ├	 	 	and say ′ is a successor of c if 
configuration ′ follows from configuration  in one 
step of M, according to the transition rules . ├	∗  
denotes the reflexive transitive closure of ├	 . The 
relation ├	  is not necessarily single-valued, because 

 is not. A computation path of M on  is a sequence 
├	 	 ├	 …├	 	 0 , where . An 

accepting computation path of M on x is a computation 
path of M on x which ends in an accepting configuration. 
We say that M accepts x if there is an accepting 
computation path of M on input x. 
Let , , , : ↦  be a function. A seven-way 

four-dimensional Turing machine M is said to be 
, , ,  space-bounded if for each , , , 1 

and for each  with , , , 
and , if  is accepted by M, then there is an 
accepting computation path of M on  in which M uses 
no more than , , ,  cells of the storage tape. We 
denote an , , ,  space-bounded SV4-DTM 
(SV4-NTM) by SV4-DTM( , , , )  (SV4-NTM 
( , , , )). 

 Let L(l, m, n) : N3 ↦  R be a function. A 
seven-way four-dimensional Turing machine M is said 
to be L(l, m, n) space-bounded if for each l, m, n  1 
and for each x with l1(x) = l, l2(x) = m, and l3(x) = n, if x 

is accepted by M, then there is an accepting computation 
path of M on x in which M uses no more than L(l, m, n) 
cells of the storage tape. We denote an L(l, m, n) 
space-bounded SV4-DTM (SV4-NTM) by SV4-DTM(L(l, 
m, n)) (SV4-NTM(L(l, m, n))). 
Definition 2.5. For any four-dimensional automaton M 
with input alphabet Σ, define T(M) = {x	∈ Σ | M 
accepts x}. Furthermore, for each X	∈	{D,N}, define 

L[4-XMA1] = {T | T = T(M) for some 4-XMA1}, 
L[SV4-XTM(S(l,m,n))] = {T | T = T(M) for some 

SV4-XTM(S(l,m,n)) M}, and 
L[SV4-XTM(L(l,m))] = {T | T = T(M) for some 

SV4-XTM((l,m)) M}. 
By using the same technique as in the proof of 

Lemma 5.4 in [2], we can easily prove the following 
theorem. 
Lemma 2.1. For any function L(l, m, n)  loglmn, 
L[SV4-XTM(L(l,m,n))] ⊆ 

	∪  L[SV4-DTM(2 , , )]. 

3. Sufficient spaces 

In this section, we investigate the sufficient spaces (i.e., 
upper bounds) for seven-way Turing machines to 
simulate one-marker automata. We first show that lmn 
loglmn space is sufficient for SV4-NTM’s to simulate 
4-DMA1’s. 
Theorem 3.1. L[4-DMA1] ⊆ L[SV4-NTM(lmnloglmn)]. 
Proof : Suppose that a 4-DMA1 M = (Q, q0, F, Σ, ) is 
given. We partition the extended states Q ,  into 
disjoint subsets Q+ = Q  and Q－ = Q  
which correspond to the extended states when M is 
holding and not holding the marker in the finite control, 
respectively. We assume that M has a unique accepting 
state qa, i.e., | F | = 1. In order to make our proof clear, 
we also assume that M begins to move with its input 
head on the position (l + 1, m + 1, n + 1, t + 1) and, 
when M accepts an input, it enters the accepting state at 
the same position (l + 1, m + l, n + 1, t + 1) with the 
marker held in the finite control. 
Suppose that an input tape x with , 

,  , and  is given to M. 
For M and x, we define three types of mappings 

↑ ∶ 0,1, … , 1 0,1, … , 1  
0,1, … , 1 ↦ 	 0,1, … , 1  
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0,1, … , 1 0,1, … , 1 ∪ , 
↑ ∶ 0,1, … , 1 0,1, … , 1  

0,1, … , 1 ↦ 	 0,1, … , 1  
0,1, … , 1 0,1, … , 1 ∪ ,  and 
↓ ∶ 0,1, … , 1 0,1, … , 1  

0,1, … , 1 ↦ 	 0,1, … , 1  
0,1, … , 1 0,1, … , 1 ∪ , 

(r = 0,1, ... , t+1) as follows. (Below, we attach the 
superscripts ‘ ’, ‘ ’ to any extended states in (Q+, Q－, 
respectively.) 
		 ↑ , , , , , , ′ : Suppose that we make 
M start from the configuration , , , ,
1 , , i.e., no marker existing either on the input x or 
in the finite control of M. After that, if M reaches the 
r-th three-dimensional rectangular array of x in some 
time, the configuration corresponding to the first arrival 
is , , , , , ′ ; 
		 ↑ , , ,  : Starting from the configuration 

, , , , 1 ,  with no marker on the input 
tape, M never reaches the r-th three-dimensional 
rectangular array of x. 
		 ↑ , , , , , ,  : Suppose that we 
make M start from the configuration , , , ,
1 , , i.e., holding the marker in the finite control of 
M. After that, if M reaches the r-th three-dimensional 
rectangular array of x with its marker held in the finite 
control in some time ( so, when M puts down the marker 
on the way, it must return to this position again and pick 
up the marker), the configuration corresponding to the 
first arrival is , , , , , ′  ; 
		 ↑ , , ,  : Starting from the configuration 

, , , , 1 , , M never reaches the r-th 
three-dimensional rectangular array of x with its marker 
held in the finite control. 
		 ↓ , , , ’ , ’, , ′  : Suppose that we 
make M start from the configuration , , , ,
1 , , i.e., no marker existing either on the input tape 
or in the finite control of M. After that, if M reaches the 
r-th three-dimensional rectangular array of x in some 
time, the configuration corresponding to the first arrival 
is , , , , , ′ ; 
		 ↓ , , ,  : Starting from the configuration 

, , , , 1 , , M never reaches the r-th 
three-dimensional rectangular array of x. 

Then, we can show that there exists an 
SV4-NTM(lmloglm) M' such that T(M’)= T(M). Roughly 
speaking, while scanning from the top 
three-dimensional rectangular array down to the bottom 
three-dimensional rectangular array of the input, M’ 
guesses ↓ , constructs ↑  and ↑ , checks ↓ , 
and finally at the bottom three-dimensional rectangular 
array of the input, M’ decides by using  ↑  and 
↑  whether or not M accepts x. 
In order to record these mappings for each r, O(lmn) 

blocks of O(loglmn) size suffice, so in total, 
O(lmnloglmn) cell of the working tape suffice. More 
precisely, the working tape must be used as a 
‘multi-track’ tape, but we omit the detailed construction 
of the working tape of M’. It will be obvious that T(M) 
= T(M').                   □ 
From Lemma 2.1 and Theorem 3.1, we get the 

following. 
Corollary 3.1. L[4-DMA1] ⊆ 

L [SV4-DTM(2 )]. 
Next, we can show that l2m2n2 space is sufficient for 

SV4-NTM’s to simulate 4-NMA1’s. The basic idea and 
outline of the proof are the same as those of Theorem 
2.1. 
Theorem 3.2. L[4-NMA1] ⊆ L[SV4-NTM(l2m2n2)]. 
From Lemma 2.1 and Theorem 3.2, we get the 

following. 
Corollary 3.2. L[4-NMA1] ⊆ 

L [SV4-DTM(2 )]. 

4. Conclusion 

In this paper, we showed the sufficient space for 
SV4-DTM’s to simulate 4-DMA1’s (4-NMA1’s) is 
2 (2 ) and the sufficient space for 
SV4-NTM’s to simulate 4-DMA1’s (4-NMA1’s) is 
lmnloglmn (l2m2n2). It will be interesting to investigate 
how much space is necessary for SV4-DTM’s ( or 
SV4-NTM’s) to simulate 4-DMA1’s ( or 4-NMA1’s). 
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