

© The 2015 International Conference on Artificial Life and Robotics (ICAROB 2015), Jan. 10-12, Oita, Japan

Sufficient spaces for seven-way four-dimensional Turing machines
to simulate four-dimensional one-marker automata

Makoto Nagatomo, Makoto Sakamoto, Hikaru Susaki, Tuo Zhang, Satoshi Ikeda and Hiroshi Furutani
 Faculty of Engineering, University of Miyazaki, 1-1 Gakuen Kibanadai Nishi

Miyazaki, Miyazaki 889-2192, Japan
E-mail: sakamoto@cs.miyazaki-u.ac.jp

Takao Ito
 Institute of Engineering, Hiroshima University, 4-1, Kagamiyama1-chome

Higashi-Hiroshima, Hiroshima 739-8527, Japan
E-mail: itotakao@horoshima-u.ac.jp

Yasuo Uchida
Department of Business Administration, Ube National College of Technology, Tokiwadai

Ube, Yamaguchi 755-8555, Japan
E-mail:uchida@ube-k.ac.jp

Tsunehiro Yoshinaga
Department of Computer Science & Electronic Engineering,

National Institute of Technology, Tokuyama College, Gakuendai
Shunan, Yamaguchi 745-8585, Japan

E-mail:yosinaga@tokuyama.ac.jp

Abstract

A multi-marker automaton is a finite automaton which keeps marks as ‘pebbles’ in the finite control, and cannot rewrite any input
symbols but can make marks on its input with the restriction that only a bounded number of these marks can exist at any given time.
An improvement of picture recognizability of the finite automaton is the reason why the marker automaton was introduced. That is, a
one-marker automaton can recognize connected picture. This automaton has been investigated in the two- or three-dimensional case.
As is well known among the researchers of automata theory, one-marker automata are equivalent to ordinary finite state automata. In
other words, there is no working space usage such as Turing machines to calculate the space complexities. In this paper, we deal with
four-dimensional one-marker automata in terms of the space complexities that seven-way four-dimensional Turing machines, which
can move east, west, south, north, up, down, or in the future, but not in the past on four-dimensional rectangular input tapes, suffice to
simulate one-marker automata.

Keywords: computational complexity, finite automaton, marker, simulation, Turing machine, upper bounds.

1. Introduction

A multi-marker automaton is a finite automaton
which keeps marks as ‘pebbles’ in the finite control, and
cannot rewrite any input symbols but can make marks
on its input with the restriction that only a bounded
number of these marks can exist at any given time[1].
An improvement of picture recognizability of the finite
automaton is the reason why the marker automaton was

introduced. That is, a two-dimensional one-marker
automaton can recognize connected pictures. This
automaton has been widely investigated in the two- or
three-dimensional case [2].
 As is well known among the researchers of automata
theory, one-dimensional one-marker automata are
equivalent to ordinary finite state automata. In other
words, there is no need of working space usage for

- 340 -

M. Nagatomo, M. Sakamoto, H. Susaki, T. Zhang, S. Ikeda, H. Furutani, T. Ito, Y. Uchida and T. Yoshinaga

© The 2015 International Conference on Artificial Life and Robotics (ICAROB 2015), Jan. 10-12, Oita, Japan

one-way Turing machines to simulate one-marker
automata, as well as finite state automata.
 In the two-dimensional case, the following facts are
known : the necessary and sufficient space for
three-way two-dimensional deterministic Turing
machines TR2-DTM’s to simulate two-dimensional
deterministic (nondeterministic) finite automata
2-DFA’s (2-NFA’s) is mlogm (m2) and the
corresponding space for three-way two-dimensional
nondeterministic Turing machines TR2-NTM’s is m (m),
whereas the necessary and sufficient space for
three-way two-dimensional deterministic Turing
machines TR2-DTM’s to simulate two-dimensional
deterministic (nondeterministic) one-marker automata
2-DMA1’s (2-NMA1’s) is 2mlogm (2) and the
corresponding space for TR2-NTM’s is mlogm (m2),
where m is the number of columns of two-dimensional
rectangular input tapes.

In the three-dimensional case, the following facts are
known : the necessary and sufficient space for five-way
three-dimensional deterministic Turing machines
FV3-DTM’s to simulate three-dimensional deterministic
(nondeterministic) finite automata 3-DFA’s (3-NFA’s)
is m2logm (m3) and the corresponding space for
five-way three-dimensional nondeterministic Turing
machines FV3-NTM’s is m2 (m2), whereas the necessary
and sufficient space for five-way three-dimensional
deterministic Turing machines FV3-DTM’s to simulate
three-dimensional deterministic (nondeterministic)
one-marker automata 3-DMA1’s (3-NMA1’s) is 2lmloglm
(2) and the corresponding space for FV3-NTM’s is
lmloglm (l2m2), where l(m) is the number of rows
(columns) on each plane of three-dimensional
rectangular input tapes.
 In this paper, we deal with four-dimensional
one-marker automata in terms of the space complexities
that seven-way four-dimensional Turing machines
suffice to simulate four-dimensional one-marker
automata.

2. Preliminaries

An ordinary finite automaton cannot rewrite any
symbols on input tape, but a marker automaton can
make a mark on the input tape. We can think of the
mark as a ‘pebble’ that M puts down in a specified

position. If M has already put down the mark, and wants
to put it down elsewhere, M must first go to the position
of the mark and pick it up. Formally, we define it as
follows.
Definition 2.1. A four-dimensional nondeterministic
one-marker automaton (4-NMA1) is defined by the
6-tuple M = (Q, q0, F, Σ, { +, - }, δ), where
(1) Q is a finite set of states ;
(2) q0 ∈ Q is the initial state ;
(3) F ⊆ Q is the set of accepting states ;
(4) Σ is a finite input alphabet (# ∉ Σ is the boundary
symbol);
(5) {+,－} is the pair of signs of presence and absence
of the marker ; and
(6) δ : (,) ((Σ ∪ #) ,) ↦ 	
2 , ((Σ ∪ #) ,) 	 east, west,
south, north, up, down, future, past, no	move is
the next-move function, satisfying the following : For
any q, q’ ∈ Q, any a, a’ ∈ Σ, any u, u’, v, v’ ∈ , ,
and any d 	∈ east,west, south, north, up, down,
future, past, no	move , if ((q’, u’), (a’, v’),d) ∈ ((q,v),
(a,v)) then and , , , ∈ , , , ,
	 , , , , , , , , , , , , , , , .
 We call a pair , in , an extended
state, representing the situation that M holds or does not
hold the marker in the finite control according to the
sign 	 or 	 , respectively. A pair , in
Σ , represents an input tape cell on which the
marker exists or does not exist according to the sign

	 or 	 , respectively.
 Therefore, the restrictions on imply the following
conditions. (i) When holding the marker, M can put it
down or keep on holding. (ii) When not holding the
marker, and ① if the marker exists on the current cell,
M can pick it up or leave it there, or ② if the marker
does not exist on the current cell, M cannot create a new
marker any more.
Definition 2.2. Let Σ be the input alphabet of 4-NMA1
M. An extended input tape of M is any
four-dimensional tape over Σ , such that for
some ∈ Σ ,
(i) for each 1 4 , ,
(ii) for each 1 , 1 ,
1 , and 	 1 , , ,
, = , , , , 	for some ∈ , .

- 341 -

 Sufficient spaces for seven-way

© The 2015 International Conference on Artificial Life and Robotics (ICAROB 2015), Jan. 10-12, Oita, Japan

Definition 2.3. A configuration of 4-NMA1 M = (Q, q0,

F, Σ, { +, - }, δ) is a pair of an element of Σ ∪ #
, and an element of ∪ 0

, . The first component of a configuration
, , , , , , represents the extended

input tape of M. The second component , , ,
of represents the input head position. The third
component , of represents the extended state.
An element of 	is called a semi-configuration of M.
If q is the state associated with configuration c, then c is
said to be an accepting configuration if q is an accepting
state. The initial configuration of M on input x is

, 1,1,1,1 , , , where is the
special extended input tape of M such that

, , , = , , , , for each
, , , 	 1 , 1 , 1

, 1 . If M moves
deterministically, we call M a four-dimensional
deterministic one-marker automaton (4-DMA1).
Definition 2.4. Given a 4-NMA1

 M = (Q, q0, F, Σ, {+, -},
δ), we write ├	 	 	and say ′ is a successor of c if
configuration ′ follows from configuration in one
step of M, according to the transition rules . ├	∗
denotes the reflexive transitive closure of ├	 . The
relation ├	 is not necessarily single-valued, because

 is not. A computation path of M on is a sequence
├	 	 ├	 …├	 	 0 , where . An

accepting computation path of M on x is a computation
path of M on x which ends in an accepting configuration.
We say that M accepts x if there is an accepting
computation path of M on input x.
Let , , , : ↦ be a function. A seven-way

four-dimensional Turing machine M is said to be
, , , space-bounded if for each , , , 1

and for each with , , ,
and , if is accepted by M, then there is an
accepting computation path of M on in which M uses
no more than , , , cells of the storage tape. We
denote an , , , space-bounded SV4-DTM
(SV4-NTM) by SV4-DTM(, , ,) (SV4-NTM
(, , ,)).

 Let L(l, m, n) : N3 ↦ R be a function. A
seven-way four-dimensional Turing machine M is said
to be L(l, m, n) space-bounded if for each l, m, n 1
and for each x with l1(x) = l, l2(x) = m, and l3(x) = n, if x

is accepted by M, then there is an accepting computation
path of M on x in which M uses no more than L(l, m, n)
cells of the storage tape. We denote an L(l, m, n)
space-bounded SV4-DTM (SV4-NTM) by SV4-DTM(L(l,
m, n)) (SV4-NTM(L(l, m, n))).
Definition 2.5. For any four-dimensional automaton M
with input alphabet Σ, define T(M) = {x	∈ Σ | M
accepts x}. Furthermore, for each X	∈	{D,N}, define

L[4-XMA1] = {T | T = T(M) for some 4-XMA1},
L[SV4-XTM(S(l,m,n))] = {T | T = T(M) for some

SV4-XTM(S(l,m,n)) M}, and
L[SV4-XTM(L(l,m))] = {T | T = T(M) for some

SV4-XTM((l,m)) M}.
By using the same technique as in the proof of

Lemma 5.4 in [2], we can easily prove the following
theorem.
Lemma 2.1. For any function L(l, m, n) loglmn,
L[SV4-XTM(L(l,m,n))] ⊆

	∪ L[SV4-DTM(2 , ,)].

3. Sufficient spaces

In this section, we investigate the sufficient spaces (i.e.,
upper bounds) for seven-way Turing machines to
simulate one-marker automata. We first show that lmn
loglmn space is sufficient for SV4-NTM’s to simulate
4-DMA1’s.
Theorem 3.1. L[4-DMA1] ⊆ L[SV4-NTM(lmnloglmn)].
Proof : Suppose that a 4-DMA1 M = (Q, q0, F, Σ,) is
given. We partition the extended states Q , into
disjoint subsets Q+ = Q and Q－ = Q
which correspond to the extended states when M is
holding and not holding the marker in the finite control,
respectively. We assume that M has a unique accepting
state qa, i.e., | F | = 1. In order to make our proof clear,
we also assume that M begins to move with its input
head on the position (l + 1, m + 1, n + 1, t + 1) and,
when M accepts an input, it enters the accepting state at
the same position (l + 1, m + l, n + 1, t + 1) with the
marker held in the finite control.
Suppose that an input tape x with ,

, , and is given to M.
For M and x, we define three types of mappings

↑ ∶ 0,1, … , 1 0,1, … , 1
0,1, … , 1 ↦ 	 0,1, … , 1

- 342 -

M. Nagatomo, M. Sakamoto, H. Susaki, T. Zhang, S. Ikeda, H. Furutani, T. Ito, Y. Uchida and T. Yoshinaga

© The 2015 International Conference on Artificial Life and Robotics (ICAROB 2015), Jan. 10-12, Oita, Japan

0,1, … , 1 0,1, … , 1 ∪ ,
↑ ∶ 0,1, … , 1 0,1, … , 1

0,1, … , 1 ↦ 	 0,1, … , 1
0,1, … , 1 0,1, … , 1 ∪ , and
↓ ∶ 0,1, … , 1 0,1, … , 1

0,1, … , 1 ↦ 	 0,1, … , 1
0,1, … , 1 0,1, … , 1 ∪ ,

(r = 0,1, ... , t+1) as follows. (Below, we attach the
superscripts ‘ ’, ‘ ’ to any extended states in (Q+, Q－,
respectively.)
		 ↑ , , , , , , ′ : Suppose that we make
M start from the configuration , , , ,
1 , , i.e., no marker existing either on the input x or
in the finite control of M. After that, if M reaches the
r-th three-dimensional rectangular array of x in some
time, the configuration corresponding to the first arrival
is , , , , , ′ ;
		 ↑ , , , : Starting from the configuration

, , , , 1 , with no marker on the input
tape, M never reaches the r-th three-dimensional
rectangular array of x.
		 ↑ , , , , , , : Suppose that we
make M start from the configuration , , , ,
1 , , i.e., holding the marker in the finite control of
M. After that, if M reaches the r-th three-dimensional
rectangular array of x with its marker held in the finite
control in some time (so, when M puts down the marker
on the way, it must return to this position again and pick
up the marker), the configuration corresponding to the
first arrival is , , , , , ′ ;
		 ↑ , , , : Starting from the configuration

, , , , 1 , , M never reaches the r-th
three-dimensional rectangular array of x with its marker
held in the finite control.
		 ↓ , , , ’ , ’, , ′ : Suppose that we
make M start from the configuration , , , ,
1 , , i.e., no marker existing either on the input tape
or in the finite control of M. After that, if M reaches the
r-th three-dimensional rectangular array of x in some
time, the configuration corresponding to the first arrival
is , , , , , ′ ;
		 ↓ , , , : Starting from the configuration

, , , , 1 , , M never reaches the r-th
three-dimensional rectangular array of x.

Then, we can show that there exists an
SV4-NTM(lmloglm) M' such that T(M’)= T(M). Roughly
speaking, while scanning from the top
three-dimensional rectangular array down to the bottom
three-dimensional rectangular array of the input, M’
guesses ↓ , constructs ↑ and ↑ , checks ↓ ,
and finally at the bottom three-dimensional rectangular
array of the input, M’ decides by using ↑ and
↑ whether or not M accepts x.
In order to record these mappings for each r, O(lmn)

blocks of O(loglmn) size suffice, so in total,
O(lmnloglmn) cell of the working tape suffice. More
precisely, the working tape must be used as a
‘multi-track’ tape, but we omit the detailed construction
of the working tape of M’. It will be obvious that T(M)
= T(M'). □
From Lemma 2.1 and Theorem 3.1, we get the

following.
Corollary 3.1. L[4-DMA1] ⊆

L [SV4-DTM(2)].
Next, we can show that l2m2n2 space is sufficient for

SV4-NTM’s to simulate 4-NMA1’s. The basic idea and
outline of the proof are the same as those of Theorem
2.1.
Theorem 3.2. L[4-NMA1] ⊆ L[SV4-NTM(l2m2n2)].
From Lemma 2.1 and Theorem 3.2, we get the

following.
Corollary 3.2. L[4-NMA1] ⊆

L [SV4-DTM(2)].

4. Conclusion

In this paper, we showed the sufficient space for
SV4-DTM’s to simulate 4-DMA1’s (4-NMA1’s) is
2 (2) and the sufficient space for
SV4-NTM’s to simulate 4-DMA1’s (4-NMA1’s) is
lmnloglmn (l2m2n2). It will be interesting to investigate
how much space is necessary for SV4-DTM’s (or
SV4-NTM’s) to simulate 4-DMA1’s (or 4-NMA1’s).

References

1. M. Blum and C. Hewitt, “Automata on a
two-dimensional tape”, IEEE Symposium on Switching
and Automata Theory (1967), pp.155-160.

2. M. Sakamoto, “Three-dimensional alternating Turing
machines”, Ph.D. Thesis, Yamaguchi University (1999).

- 343 -

