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Abstract 

Genetic algorithms (GAs) are stochastic optimization techniques, and we have studied the effects of stochastic 
fluctuation in the process of GA evolution. A mathematical study was carried out for GA on OneMax function 
within the framework of Markov chain model. We treated the task of estimating convergence time of the Markov 
chain for OneMax problem. Then, in order to study hitting time, we study the state after convergence. 
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1. Introduction 

Since GAs are stochastic optimization methods, we 
have to take into account a stochastic fluctuation to 
explain the behaviors of evolution. To do this, we made 
use of the Wright-Fisher model1, a type of Markov 
chain method. For example, we considered the effects of 
crossover on the evolution speed of OneMax problem2, 
and carried out the microscopic investigation in terms of 
linkage analysis3. We also studied the convergence time 
of Markov chain in OneMax problem4. This analysis 
was performed by using the eigenvalues of transition 
matrix representing the behavior of population in the 
GA. From this analysis, we found that the convergence 
of GA to the stationary state can be represented 
approximately by mutation rate and string length. It is 
well known from the theory of finite Markov chain that 
ergodic Markov chain converges to the stationary 
distribution5. We obtained the approximate expression 

for predicting the convergence time to the stationary 
state in terms of one parameter.  
In this paper, we report the hitting time analysis of GA 

by the use of Markov chain theory. The hitting time is 
the step at which the optimum solution appears in a 
population for the first time during the process of GA 
evolution. To simplify the analysis, we have separated 
the process into convergence time ܶ and hitting time 
after convergence ܶ.  
The convergence time ܶ can be estimated by using 

the Markov chain theory. On the other hand, we 
estimate ܶ by experiments of OneMax function, and 
survey the impact of parameters on the hitting time after 
convergence. Our results demonstrate that the hitting 
time distribution ݄ሺݐሻ has an exponential form, and the 
logarithmic of ݄ሺݐሻ  is linearly decreasing function. 
This means the distribution is almost determined by one 
parameter ܾ . We estimate the value of b from the 
experiments, and report the dependence of ܾ on the  
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population size and mutation rate. 

2. Mathematical Model 

We treat the evolution process of a population with ܰ 
individuals. The individuals are represented by binary 
strings of length ݈, and there are ݊ ൌ 2 genotypes, 

݅ ൌ൏ ݅ሺ݈ሻ, … , ݅ሺ1ሻ , ݅ሺ݇ሻ ∈ ሼ0,1ሽ. ⑴

The OneMax fitness function ݂ is defined as 

݂ ൌ  ݅ሺ݇ሻ



ୀଵ

. ⑵

Thus the string of all ones ൏ 1,1, … ,1   is the 
optimum solution of this function. 

3. Analysis of Hitting Time 

 In our model, we will investigate the distribution of 
hitting time ܪሺݐሻ approximately. Though it is difficult 
to obtain the theoretical expression of ܪሺݐሻ. Therefore, 
in order to study the hitting time ுܶ directly, we have 
separated ுܶ into converge time ܶ  and hitting time 
after converge ܶ . By analyzing ܶ  and ܶ , we can 
estimate the upper bound of hitting time1. So we assume 

ுܶ  ܶ  ܶ. ⑶

 We have used the concept of Markov chain to analyze 
convergence time ܶ . In this study, we used 
experimental method to estimate the hitting time after 
convergence ܶ. In this study, we obtained the hitting 
time distribution after convergence ݄ሺݐሻ  by the 
experiments. 

3.1. Analysis of convergence 

In our study, we used the Wright-Fisher model to 
theoretically analyze the process of population 
convergence. The Wright-Fisher model is one of the 
Markov model in population genetics6,7. 
We consider the GA under positive mutation rate 
  0 . In this case, all elements of the transition 
matrix ܲ are positive, and the Markov chain of schema 
evolution is irreducible and aperiodic. The Markov 
chain theory states that an irreducible and aperiodic 
Markov chain converges to the stationary distribution ߨ 

݈݅݉
௧→ஶ

ሻݐሺߤ ൌ ,ߨ  ⑷

and all elements ߨ are positive5. 
 In order to analyze the evolution of the first order 
schema, we referenced the total variation distance9. The 
total variation distance between the stationary 
distribution and the first order schema at generation ݐ 

is defined as 

ܸܶሺݐሻ ൌ
1
2
|ߤሺݐሻ െ |ߨ

ே

ୀ

. ⑸

By analyzing Markov chain, we have at large t 

ܸܶሺݐሻ ൌ ⑹ ,௧ܽ	ܥ

where C is a constant. It should be noted that the 
convergence behavior is determined by only one 
parameter a. The parameter ܽ  is the second largest 
eigenvalue of the transition matrix8 ܲ. 

ܽ ൌ ൬1 െ
1
݈
൰ ሺ1 െ ⑺ .ሻ2

3.2. Analysis of hitting time after convergence 

In this study, we obtained the hitting time distribution 
after convergence ݄ሺݐሻ by using the experiments of 
OneMax problem. The distribution ݄ሺݐሻ is the result of 
resetting generation ݐ ൌ 0  when the population 
achieves the convergence state. 
Our results demonstrate that the hitting time 

distribution ݄ሺݐሻ is an exponential form, 
݄ሺݐሻ ൌ ⑻ ,ሻ௧ݐሺܤ

and the logarithmic of ݄ሺݐሻ  is linearly decreasing 
function 

log ݄ሺݐሻ ൌ ݐ logܤሺݐሻ. ⑼

Then, we transform this equation to 

logܤሺݐሻ ൌ
log ݄ሺݐሻ

ݐ
. ⑽

We calculated the average of logܤሺݐሻ, 

logܤሺݐሻതതതതതതതതതത ൌ
∑ logܤሺݐሻ௧

ݐ
, ⑾

and defined a constant, 

ܾ ൌ exp൫logܤሺݐሻതതതതതതതതതത൯. ⑿

We can defined that the distribution is almost 
determined by one parameter ܾ 

݄ሺݐሻ ൎ ܾ௧. ⒀

We report the dependence of ܾ on the parameters of 
GA, population size, mutation rate, and so on. 

4. Experiments 

We compared results of the theoretical prediction with 
GA experiments. Crossover is uniform crossover with 
crossover rate ൌ 1. Mutation rate is  for each bit. 
Selection is roulette wheel selection. We averaged the 
results obtained by repeating 10000 calculations. The 
initial state was randomly generated with ሺଵሻ ൌ 1/2.  
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