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Abstract 

In a standard Evolutionary Algorithms (EAs), one uses the same rate for mutations from bit 1 to bit 0 and its 
reverse direction. There are many reports that the asymmetric mutation model is a very powerful strategy in EAs to 
obtain better solutions more efficiently. In this paper, we report stochastic behaviors of algorithms that are 
asymmetric mutation models of Random Local Search (RLS). The mathematical structure of asymmetry model can 
be derived in terms of a finite Markov chain. We demonstrate some useful results representing the effects of 
asymmetric mutation. 
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1. Introduction 

Theoretical studies of EAs have been performed from 
various viewpoints. One of the most attractive objects of 
them is the convergence properties of EAs [1]. In the 
previous conference, we have reported a randomized 
heuristics, which mainly treated the computational 
complexity of Random Local Search (RLS) [2]. Our 
study used the results obtained in researches on Coupon 
Collector Problem (CCP), and made a mathematical 
analysis of hitting time in RLS by extending the original 
model of CCP.  
In this conference, we report another extension of RLS, 

an asymmetric mutation model. We apply the 
asymmetric mutation in evolution of RLS; that is,  
for mutation 0 → 1 and  for 1 → 0, respectively. 
We carry out a theoretical analysis for the evolution of 
strings in the framework of a finite Markov chain [3]. 

The asymmetric mutation model is a very powerful 
strategy in EAs to obtain better solutions more 
efficiently [4]. In biology, spontaneous misreading of 
bases during DNA synthesis, mutation, is considered as 
a major factor contributing to evolution [5]. Nei stated 
that the driving force behind evolution is mutation, with 
natural selection being of only secondary importance. 
Wada et al. showed that double-stranded DNA type 
strings can solve the knapsack problem effectively by 
using the asymmetric machinery of DNA replication [6]. 
They used different mutation rates for the leading and 
lagging DNA strands. 
To analyze the behavior of the evolution processes, it 

is necessary to take into account of effects due to 
stochastic fluctuations. During the study of asymmetric 
mutation model of RLS, we noted mathematical papers 
in learning model with reinforcement, which gave the 
Markov chain model of learning processes [3]. We 
found that results in these papers can be interpreted as a 
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model of RLS with asymmetric mutation rates, and 
apply these results in the present study. 
In this model, we obtained an explicit form of Markov 

chain transition matrix, and furthermore the eigenvalues 
of this matrix were calculated by using rather technical 
methods. The largest eigenvalue is naturally 1, 
and the second largest one is 1 / . 
Since the most important factor to decide the speed of 
convergence is the second largest eigenvalue, we know 
the averaged value of two mutation rates mainly 
controls the speed of evolution. We will show in our 
report the behavior of solutions from the aspects of 
mathematical analysis and numerical simulations. 

2. Evolutionary Algorithms 

As a test function, we adopt OneMax function  

,			 ∈ 0,1 , 

where  is a binary string of length . We consider the 
maximization of OneMax function. The optimum 
solution is 1 , and .  
1. The first choice of Evolutionary Algorithm is the 

Random Local Search (RLS). We define RLS as 

Algorithm 1    Random Local Search 

1: Initialize ∈ 0,1  uniformly at random. 
2: Create  by flipping one bit in  which is 

selected at random. 
3: Select if  then ≔ . 
4: Go to 2 until a termination condition is fulfilled.

2. The next one is RLS with asymmetric mutation 
(ARLS). The ARLSis defined  as 

Algorithm 2    RLS of Asymmetric Mutation 

1: Initialize ∈ 0,1  uniformly at random. 
2: Select one bit  in  at random. 
3: With probability 1 , . 

If 0 then 1 with probability .
If 1 then 0 with probability .

4: If  is flipped then ≔ . 
5: Go to 2 until a termination condition is fulfilled.

3. The third one is a lazy version of RLS, which is 
defined as 

Algorithm 3    Lazy RLS  

1: Initialize ∈ 0,1  uniformly at random. 
2: Select one bit  in  at random. 

3: Does not change  with probability 1 . 
If 0 then 1 with probability .

4: If  is flipped then ≔ . 
5: Go to 2 until a termination condition is fulfilled.

This model is also defined as the variation of ARLS by 
putting 0. 

3. Markov Chain Model 

This section presents the Markov chain approaches to 
the EAs. The search space of OneMax function is 
Ω 0,1 , and we divide Ω  into 1  subsets 
Ω ∪ ∪⋯∪ , where . 

3.1. Asymmetric mutation model of RLS 

The transition matrix , |  represents the 
evolution of ARLS. 

1. For 1, 0  

, 1 . 

2. For 1, 0  

, . 

3. For , 0  

, 1 1 . 

For example, the transition matrix for 3 is given 
by 

1
1
3

1
2
3

1
3

		
0					 		 0
2
3

												0

0																			
2
3

						

0 0 		

1
1
3

2
3

1
3
1

The left eigenvectors , , ⋯ ,  satisfy, in 
the case of 3, 

1
1
3

,

1
2

3

1

3

2

3
,

2
3

1
1

3

2

3
,

1
3 2 1 3 3.

We define the th order polynomial function 

⋯ . 
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Multiplying eigenvalue equations with 1, , , … , , 
respectively, and summing them up, we have 

1 1 0.

Considering this as a differential equation of , we 
have 

1 , 

1
, 

where  is an arbitrary constant. Since  is a 
polynomial of th order,  must be an integer of 
0,1, … , . Then the eigenvalues are given by 

1 , 0,1, … , . ⑴

The largest eigenvalue is 1 , and the second 
largest one  is 1 / , which 
determines the convergence speed of the chain. 
The eigenvector corresponding to the largest 

eigenvalue 1  presents the distribution of the 
stationary state. In this case of 0, we have 

, 

thus the components of eigenvector with normalization 
are given by 

/ ,			 0 . ⑵

From this, we can obtain  the average number of bit 
ones, 

. 

Similarly, we have the variance 
∙

. 

Both quantities depend on the ratio of two mutation 
rates / . 

3.2. Lazy RLS 

The transition matrix for the lazy RLS  is given by 

1 0

0 1
1 1 ⋯ 			0

			0			 				⋮

			⋮				 									⋮								 									⋱							
0 	0 		⋯
0 0 		⋯

⋱ ⋮

1

0 1

 

 

 

⑶

This equation shows that the Markov chain is 
absorbing one, and there are  transient and one 
absorbing states, respectively. For absorbing Markov 
chains, the transition matrix is represented as 

 ⑷

The  submatrix  shows transition probabilities 
among transient states , , ⋯ , . Since there is 
only one absorbing state, the unit matrix  is a scalar 1.  
For the calculation of the hitting time of the optimum 

solution, we use the fundamental matrix 
. ⑸

After some calculations, we have 

, 0,  

, . 

The expected step  to enter into the absorbing 
state from the initial state  is given by the vector  
of 1  [3] 

, 

where  is the expected step from $i$th state, and  
is a column vector whose all entries are 1. Thus, we 
have 

1
																																  

0 1 , 

 

 

⑹

where  is the -th harmonic number 

1
1
2

⋯
1
. 

The variance of  is given by 
2 , 

where  is a column vector whose elements are . 
The explicit form of the variance is given by 

, ⑺

where  is the  generalized harmonic number 
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4. Summary 

In this paper, we considered the behavior of the 
asymmetric mutation in the solving the optimization of 
OneMax function. This problem can be solved 
analytically in terms of a finite Markov chain [3]. We 
derived the explicit form of eigenvalues and 
eigenvectors, and obtained various quantities 
theoretically. 
In genetic biology, it has been suggested by many 

statistical studies that asymmetric directional mutation 
pressures are commonly observed in weakly selected 
positions [7]. It is interesting to study the phenomena 
using the theoretical approach presented in this paper. 
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