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Abstract 

Haemophilia A is a genetic disease resulting from deficiency of factor VIII. The database of mutations causing 
haemophilia A has been developed by the world wide collaboration. In this study, we examined the relation 
between activity of factor VIII and the missense mutation by using machine learning. As parameters, we used four 
physical-chemical parameters of amino acids. We predicted the severity of haemophilia A by using machine 
learning in factor VIII. As the result, logistic regression is not better than other methods in the prediction of 
haemophilia A severity. The result of the prediction improved in order to SVM, bagging, boosting and random 
forest. These results suggested that we can predict the haemophilia A severity by using these methods, and random 
forest was the best method in these five methods to predict the haemophilia A severity. 
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1. Introduction 

The haemophilia is a group of hereditary genetic 
disorders, in which one of the coagulation factors is 
deficient [1]. Haemophilia A is the most common form 
of disorder caused by low concentration of the 
coagulation factor VIII. Haemophilia B is another form 
of disorder caused by deficient factor IX. Haemophilia 
A accounts for about 85% of this disorder, while 
haemophilia B for 10−12% [2].  

Haemophilia A and B are clinically 
indistinguishable from each other. Diagnosis must be 
confirmed by specific factor assay. It becomes very 
important to study mutations in genes responsible for 
diseases by biological experiment. However, it is a 
time-consuming, laborious and expensive task. Thus, it 
is necessary to develop computational method by 

applying various approaches. We used a multiple 
regression model to predict the effect of a missense 
mutation in factor IX gene of haemophilia B patients [3]. 
In the past, we have demonstrated the calculations using 
Support Vector Machin (SVM) for the analysis of 
mutant factor VIII genes [4].  

There have been reported a variety of defects in 
factor VIII gene from haemophilia A patients [5], and 
these are summarized in the haemophilia A database [6]. 
This database has data of clotting activity, nucleotide 
No., position, changed amino-acid and mutation type. In 
this study, we analyzed amino acid changing mutations, 
or missense mutations in the database described with 
factor VIII activity values. We adopted 439 cases from 
the database. We use the distances between 20 amino 
acids by using the four physical-chemical properties: 
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Molecular volume, Hydropathy, Polar requirement and 
Isoelectric point. These distances are the differences 
between physical-chemical values before mutation and 
after mutation. In this study, we used some machine 
learnings to analyze of haemophilia A severity, and we 
compared these methods. 

2. Methods 

2.1. Haemophilia A Database 

The gene coding for human factor VIII consists of 26 
exons and 25 introns, and is located on the X 
chromosome [5]. Factor VIII is an essential blood-
clotting protein, and synthesized as a precursor protein 
of 2351 amino acids. This includes a signal peptide and 
a mature protein of 2332 amino acids with domain 
structure A1-A2-B-A3-C1-C2. Classification of 
haemophilia A is presented in Table 1.Three A domains 
display approximately 30% homology to each other. 
The C domains are structurally related to the C domains 
of factor V. The B domain exhibits no significant 
homology with any other known protein. We used 
Haemophilia A Mutation Database [6]. The part of the 
database is shown in Table 2. This database includes 
exon number, amino-acid number, amino-acid change 
and activity of factor VIII (FVIII:C). Activity of factor 
VIII in a patient's blood depends on a position of the 
substitution and combination of original and substituting 
amino acids.  

Table 1.  Domain structure and number of data in 
Factor VIII. 

Domain Location Number of data 
A1 1 ~ 329 111 
A2 330 ~ 711 131 
B 712 ~ 1648 18 

A3 1649 ~ 2019 107 
C1 2020 ~ 2172 39 
C2 2173 ~ 2332 33 

 total 439 

Table 2.  Mutation database of haemophilia A. 

Exon 
Number 

Amino-acid 
Number 

Amino-acid 
Change 

FVIII:C 
(%) 

1 3 Arg Thr 1
1 6 Tyr Cys 6
1 10 Val Gly <1

1 11 Glu Lys 1.5
1 14 Trp Gly 5
⋮ ⋮ ⋮ ⋮

2.2. Machine Learning 

We used five machine learnings for analysis of 
haemophilia A database. These are logistic regression, 
support vector machine, bagging, boosting and random 
forest. We used statistical application software “R” and 
packages for calculations. The packages are ‘kernlab’, 
‘ipred’, ‘ada’ and ‘randomForest’. 

2.2.1. Logistic Regression 

Logistic regression is a probabilistic statistical 
classification (regression) model. It is used for 
predicting the outcome of a categorical dependent 
variable based on predictor variables. It is a kind of 
generalization linear model using a logistic function.  

2.2.2. Support Vector Machine 

SVM (Support Vector Machine) is supervised learning 
models with associated learning algorithms [7]. It is 
used for classification and regression analysis. Given a 
set of training data, SVM builds a model. It assigns new 
data into one category or the other. It is a non-
probabilistic binary linear classifier.  

2.2.3. Bagging 

Bagging is a method for generating multiple versions of 
a predictor and using these to get an aggregated 
predictor [8]. The aggregation does a plurality vote 
when predicting a class. The multiple versions are 
formed by making bootstrap replicates of the learning 
set. Tests on data sets using classification and regression 
trees show that bagging can give substantial gains in 
accuracy.  

2.2.4. Boosting 

Boosting is a machine learning based on the idea of 
creating a highly accurate predictor by combining many 
weak rules of thumb [9]. A remarkably rich theory has 
evolved around boosting with connections to a range of 
several topics. Boosting algorithms have also made 
practical success in such fields as biology, vision, and 
speech processing.  
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