Prototype of a Decision Table Generation Tool from the Formal Specification

Kenta Nishikawa", Tetsuro Katayama”, Yoshihiro Kita'
Hisaaki Yamaba”, Kentaro Aburada® and Naonobu Okazaki”
“University of Miyazaki, 1-1 Gakuen-kibanadai nishi, Miyazaki, 889-2192 Japan
"Kanagawa Institute of Technology, 1030 Shimo-ogino, Kanagawa, 243-0292 Japan
*Oita National College of Technology, 1666 Maki, Oita, 870-0152 Japan
E-mail: nishikawa@earth.cs.miyazaki-u.ac.jp, kat@cs.miyazaki-u.ac.jp, kita@earth.cs.miyazaki-u.ac.jp,
yamaba@cs.miyazaki-u.ac.jp, aburada@oita-ct.ac.jp, oka@cs.miyazaki-u.ac.jp

Abstract

This research has implemented a prototype of a decision table generation tool from the specification (the formal
specification) described in a formal specification language. This paper uses the formal specification description
language VDM++ which is the lightweight formal methods VDM (Vienna Development Method) to write the
formal specification. We applied some general specifications to the prototype, in order to evaluate its usefulness. As
a result, the prototype has improved the efficiency in test design with formal methods.

Keywords: automatic generation, decision table, formal method, formal specification, VDM++, test design

1. Introduction

In recent years, the software quality cannot be
maintained with the conventional software development
methods because software system becomes large scale
and high performance. At the same time, effect of
defects in the system becomes one of the major social
problems with the economy and life.

Hence, the software quality becomes
important. A demand for reliability and safety of the
system is growing.

In general, many defects are embedded in the
upstream process of the software development.' As one
reason of the above, each step in the software
development process moves to the next step with
specifications included ambiguous description.
Therefore, specifications should be written strictly. As a
means for writing specifications strictly, formal
methods® are proposed. The formal methods are a
means for using strict specifications in each step in the
software development process. They express the system

more

with a specification description language based on
mathematical logic. Using the formal methods can
remove defects or ambiguity of the specifications. They
attract attention as a means to improve software quality.

By the way, as one of the test techniques, the
decision table’ is proposed in the testing process of the
software cycle. The decision table uses a matrix divided
the logical relationships in specifications into items of
conditions and actions. However, it takes much time and
effort to design the decision table. It is needed to extract
test items and understand contents written on
specifications. It is no exception even if you write strict
specifications with formal methods.

This research has implemented a prototype of a
decision table generation tool from the specification (the
formal specification) described in a formal specification
language, in order to improve efficiency of the test
design with formal methods.* This prototype generates a
decision table from the formal specifications, and
displays it. This paper uses the formal specification
description language VDM++ which is the lightweight

© The 2015 International Conference on Artificial Life and Robotics (ICAROB 2015), Jan. 10-12, Oita, Japan

- 388 -

Kenta Nishikawa, Tetsuro Katayama, Yoshihiro Kita, Hisaaki Yamaba, Kentaro Aburada, Naonobu Okazaki

Converter

DT- Decision |I
Generator || Table

internal expression data

for analysis Conditions
extraction
P Post |
N re P
Parsin e condition [P
dat: 9 condition Actions
ata extraction

Module

Truth values
generation

Fig. 1. A process to generate a decision table of the prototype.

Table 1. Extraction rules.

Pattern of condition extraction Pattern of action extraction

if “condition” then then “action” elseif

elseif “condition” then then “action” else
else “action” if
else “action” elseif
else “action” else
else “action” EOF

-> “action” cases
others “action” EOF

cases “condition” ->

pre “condition” post
pre “condition” EOF
post “condition” EOF

EOF(End Of File)

formal methods VDM (Vienna Development Method)
to write the formal specification.

2. Process to Generate a Decision Table of the
Prototype

Fig. 1 shows a process to generate a decision table of
the prototype. The prototype consists of three parts:
Parser, Converter, and DT-Generator. We use a parser of
Overture Toolset as a Parser.

First, Parser reads a VDM++ specification inputted
by a user, parses VDM++ specification, and outputs a
parsing data. The parsing data has an abstract syntax
tree and tokens.

Next, Converter converts the parsing data into an
internal expression data for analysis by a module unit.
The internal expression data for analysis is a data
converted an abstract syntax tree of a parsing data into
information suitable for analysis such as the division of
a module or the correspondence of ““if”” and “else”.

CA-Table
dess Sanple Condition index Token Action index
L] IfL a
reslinddoc : 2oq of et > et I 1 ekeid @
et 3] == -.
Fel tharo 2 ekeif 1
elor i cffl] chen 0 1] ekel 2
il omf1] Huerr T
dhe s + ZPrevBinzdecii sk | Condition array Action amay
index Condition
o Sample] s=[-] a
L =[] 1 1
2 5=[1] 2 b 5 + 2 vevBin2ded d 5]

Fig. 2. An example of CA-Table.

Then, DT-Generator extracts conditions and actions
from an internal expression data for analysis. After, DT-
Generator stores conditions and actions in an array of
String type. Table 1 shows extraction rules of conditions
and actions. DT-Generator makes CA-Table, when DT-
Generator extracts conditions and actions. Fig. 2 shows
an example of CA-Table. CA-Table is a table which is
correspondence of conditions and actions. CA-Table is
three columns of condition index, token, and action
index. DT-Generator generates truth-values based on
this CA-Table.

We show truth-values generating process as follows.

(i) Make an array to store truth-values
(i1) Select the first column of this array
(iii) Select a row of CA-Table
(iv) Compare a token of the selected row of CA-Table
(a) If this token matches “if”, “elseif”, or “cases”

(I) Store “Y” into the condition index row of
this column, then store “N” from the next
column to the last column

(IT) Store “X” into the action index row of this
column

(b) If this token matches “else”, or “others”

(I) Store “N” into the condition index row of
this column, then store “-” from the next
column to the last column

(IT) Store “X” into the action index row of this
column

(v) If there is a row that we have not yet selected, we
select the next column of this array and return to
third step. Otherwise truth-values is filled

Finally, DT-Generator generates a decision table
from conditions, actions, and truth-values.

© The 2015 International Conference on Atrtificial Life and Robotics (ICAROB 2015), Jan. 10-12, Oita, Japan

- 389 -

D-Tree

LY ano
%, [Bsaaple
% * summation
N = NatSegsum
= bin2dec
* revBinZdec
* rev
* Addel
= length

DtV ver. 5.3

FS-Screen
o

@01 class Sample
802

83
804
CLLY
806
ea7
Lk
Ba9
a1e
211
812
813
B14
815
816

functions
summation(n:nat, a:seq of nmat) s:nat
pre (n = len a} and (n>=1)
post s = NatSeqSum(a };

NatSeg5um: (seq of nat) == mat
NatSegSum(5) ==
cases s 3
1 =8,
others == hd s + NatSeqSum(tl s)

o DT-Panel

bin2dec : seq of nat —3/13t

bin2dec(s)
Bl

Rk #1
Pre Condition

(n = len al...
Action

summation X

Fig. 3. Overview of the prototype.

3. Overview of the Prototype and Application
Example

Fig. 3 shows overview of the prototype. The prototype
consists of three displays: D-Tree, FS-Screen, and DT-
Panel. FS-Screen displays a VDM++ specification
inputted by a user. DT-Panel consists of three tabs: P-
Tab, A-Tab, and Q-Tab. P-Tab displays a decision table
of preconditions. A-Tab displays a decision table of a
module. Q-Tab displays a decision table of post
conditions. D-Tree displays a list of the definition
names of the VDM++ specification. D-Tree redraws a
decision table, when a user selects any the definition
names of a VDM-++ specification.

We confirm that this prototype works properly by
adapting it to an example. Fig. 4 shows an example
formal specification. It stores a positive integer X in a
binary expression array b. Here, the highest-order digit
must become one.

Fig. 5 shows the application example results. These
results shows that this prototype extracts conditions and
actions from a specification. Also, these results shows
that this prototype generates truth-values. Therefore, we
have confirmed that this prototype works properly.

4, Discussion

This research has implemented a prototype of a decision
table generation tool from the formal specification, in
order to improve efficiency of the test design with
formal methods. This prototype generates a decision
table from the formal specifications, and displays it.

Prototype of a Decision

class Dec2bin
functions

decZbin{ X : nat) b : seq of nat
pre X»=1

post {forall i in set inds b & b{)=1 or b{i)=0) and
bB{l1) = 1 and
X = NatSeqSum{ [b{i)*2**(lenb -} | i insetinds b]);

NatSegqSum : seq of nat —> nat
MNatSeqSum{s) ==
cases s :
I] - DI
others ->» hd 5 + NatSeqSum({tls)
end;

end Dec2bin

Fig. 4. The formal specification of converting decimal to
binary.

Rule

Pre Condition
X>=1
Action
dec2bin

#1 #2

[|~ HED

Rule
Post Condition
(forall 1 in set in...
Action

dec2bin

[t N (@)

Rule

Condition
[]

#1

Y
Action

] X
hd s + NatSeqSum(tl s) -

Fig. 5. The application example results.
We discuss our prototype in this chapter.

4.1. Evaluation of the usefulness

We confirm the usefulness of this prototype by using
the examinees.

Specifically, we apply three specifications, which is
ways of combination of truth-values of the conditions
are different. Then, we measure the time of examinees
and the prototype, which is required until completion
for the decision table, and compares it.

© The 2015 International Conference on Artificial Life and Robotics (ICAROB 2015), Jan. 10-12, Oita, Japan

-390 -

Kenta Nishikawa, Tetsuro Katayama, Yoshihiro Kita, Hisaaki Yamaba, Kentaro Aburada, Naonobu Okazaki

Table 2. The measured results.

Formal S.pe(flﬁcatlons (ways Examinee A Examinee B Examinee C Examinee D Examinee E |Average Prototype
of combination of truth-values

of the conditions) (sec) (sec) (sec) (sec) (sec) (sec) (sec)
Specification A (4) 252 213 169 240 134 216 0.012
Specification B (16) 405 559 499 435 557 498 0.016
Specification C (256) 1131 1292 1194 1859 1397 1629 0.02

Table 2 shows the measured results. By using the
tool, we could automatically generate a decision table
which has 256 ways of combination of truth-values of
the conditions in about 20 milliseconds.

That is, we have confirmed the usefulness of this
prototype.

4.2. Related work

Few researches of test design from the formal
specification are reported®, and the method is not well
established.

Also, CEGTest’ is a tool supporting the generation
of the decision table. CEGTest automatically generates
from a cause effect graph created by a user. However, a
user must make a cause effect graph created, manually.
Therefore, it takes much time and effort. It is needed to
extract test items and understand contents written on the
formal specification.

In addition, some test tools that inputs the formal
specification are proposed® °, but those tools do not
support the generation of the decision table from a
formal specification such as our prototype. In contrast,
our prototype can automatically get a decision table
from the formal specification inputted by a user.

5. Conclusions

This research has implemented a prototype of a decision
table generation tool from the formal specification, in
order to improve efficiency of the test design with
formal methods. This prototype generates a decision
table from the formal specifications, and displays it.

We have confirmed that our prototype extracts
conditions and actions from the formal specification.
Also, we confirmed that the prototype generates truth-
values.

By using the tool, we could automatically generate a
decision table which has 256 ways of combination of
truth-values of the conditions in about 20 milliseconds.

Future issues are as follows.

The usefulness improvement of the prototype
Application to large-scale system specifications
Automatic generation of test data

Expansion to other test design techniques

References

1. G. Tassey, The Economic Impacts of Inadequate In-
frastructure for Software Testing, National Institute of
Standards and Technology, Planning Report 02-3 (2002).
John Fitzgerald, Peter Gorm Larsen, Paul Mukherjee,
Nico Plat, Marcel Verhoef, Validated Designs for Object-
Oriented Systems, Springer (2005).

ISO 5806, Specification of single-hit decision tables.
Kenta Nishikawa, Tetsuro Katayama, Yoshihiro Kita,
[JHisaaki Yamaba and Naonobu Okazaki, Proposal of a
Supporting Method to Generate a Decision Table from
the Formal Specification, International Conference on
Artificial Life and Robotics, (2014) 222-225.]

A Scanner/Parser for the Overture Toolset,
http://overturetool.hosting.west.nl/twiki/bin/view/Main/O
vertureParser/ (accessed October 30, 2014).

Jeremy Dick, Alain Faiver, Automating the Generation
and Sequencing of Test Cases from Model-Based
Specifications, FME'93: Industrial-Strength Formal
Methods, Lecture Notes in Computer Science, 670 (1993)
268-284.

CEGTest, http://softest.jp/tools/CEGTest/
October 30, 2014).

Y. Ledru, L. du Bousquet, O. Maury, and P. Bontron,
Filtering TOBIAS combinatorial test suites, Fundamental
Approaches to Software Engineering, (2004) 281-294.
Adriana Sucena Santos, Combinatorial Test Automation
Support for VDM++, VDM/Overture Workshop, (2008)
45-53.

(98]

(accessed

© The 2015 International Conference on Atrtificial Life and Robotics (ICAROB 2015), Jan. 10-12, Oita, Japan

-391 -

