

© The 2015 International Conference on Artificial Life and Robotics (ICAROB2015), Jan.10-12, Oita, Japan

Proposal of a Testing Method Using Similarity of Interleaving
for Java Multi-threaded Programs

Shoichiro Kitano*, Tetsuro Katayama*, Yoshihiro Kita†,

Hisaaki Yamaba*, Kentaro Aburada‡ and Naonobu Okazaki*

*University of Miyazaki, 1-1 Gakuen-kibanadai nishi, Miyazaki, 889-2192 Japan
†Kanagawa Institute of Technology, 1030 Shimo-ogino, Kanagawa, 243-0292 Japan

‡Oita National College of Technology, 1666 Maki, Oita, 870-0152 Japan
E-mail: kitano@earth.cs.miyazaki-u.ac.jp, kat@cs.miyazaki-u.ac.jp, y.kita@ccy.kanagawa-it.ac.jp,

yamaba@cs.miyazaki-u.ac.jp, aburada@oita-ct.ac.jp, oka@cs.miyazaki-u.ac.jp

Abstract

In order to improve the efficiency of testing Java multi-threaded programs, this research proposes a testing method
to detect order violation in them using similarity of interleaving. The proposed method improves the efficiency of
testing by executing interleaving which can test the places where lead the order violation easily in source codes and
by reducing interleaving which is similar to executed one already. The efficiency of the method is shown by
experiments for confirmation.

Keywords: multi-threaded program, testing, similarity, Java

1. Introduction

In recent years, many computers are adapted multi-core
CPUs. In order to use such resources effectively, the
demand of multi-threaded programs increases.

It is difficult for even expert programmer to
implement multi-threaded programs. And it is easier to
embed bugs than single-threaded programs[1]. There
are some distinctive bugs in a concurrent program
which are different from the bugs in a single-threaded
program. Those bugs often appear in the latter of
development process or when the program is used by
the users. In this case, it is difficult to fix the detected
bugs. In order to prevent this problem, we need to detect
the bugs and to fix them in unit testing. However,
normal unit testing cannot test multi-threaded programs
enough. Unit testing tests often only single interleaving
because executed tasks are too small in unit testing.
Therefore, the bugs appear when the modules are

integrated. One of the testing methods for multi-
threaded programs in unit testing is to execute programs
in the plural interleaving by staggering the timing of
execution between each thread. That method can detect
the existing bugs in multi-threaded programs. However,
there is too large number of interleaving that we must
execute and many interleaving cannot detect the
distinctive bugs in a concurrent program. It takes the
same result to test by the interleaving that is similar to
tested one already and it is excessive testing. Moreover,
each distinctive bug in a concurrent program has the
own causes each other. It is not effective to detect all
such bugs by an only testing method.

In order to improve the efficiency of testing for Java
multi-threaded programs, this research proposes a
testing method to detect order violation in them using
similarity of interleaving. Our proposed method
improves the efficiency of testing by executing
interleaving which can test all places which lead the

- 380 -

Shoichiro Kitano, Tetsuro Katayama, Yoshihiro Kita, Hisaaki Yamaba, Kentaro Aburada, Naonobu Okazaki

© The 2015 International Conference on Artificial Life and Robotics (ICAROB2015), Jan. 10-12, Oita, Japan

Fig. 1. An example of a source code which includes order

violation.

Table 1. The number of threads

which involved to detect concurrency bugs.
Application Total > 2 threads 2 threads 1 threads

MySQL 22 1 17 4
Apache 17 0 17 0
Mozilla 56 1 54 1

OpenOffice 8 0 6 2
Overall 103 2 94 7

order violation easily in source codes and by reducing
interleaving which is similar to executed one already.

2. The Kinds of Bugs That Our Proposal
Method Can Detect

In this chapter, we explain the kinds of bugs that our
proposed method targets.

2.1. Target bug in multi-threaded programs

The kinds of bug patterns in concurrency programs are
classified[2]. The patterns are classified into dead lock,
atomicity violation, order violation, and so on.

Order violation means that some threads can be
executed as an access to a certain memory in an
unexpected order. It occurs when a synchronization
protocol for several threads is deficient. Fig.1 shows an
example of a source code which includes order violation.
Consider the case which methodA and methodB are
executed in different threads each other. Statement B
expects that ham has been initialized by statement A
before statement B accesses to ham. However, this
program can execute statement B before statement A.
That leads the incident. The cause of this problem seems
like atomicity of flag. However, Accessing to ham is
unacceptable before ham has been initialized. Even if
accessing to ham is serialized, the incident occurs
because the initial value of ham is null.

In this research, we propose a testing method which
can detect order violation as above.

Fig. 2. An example of a source code which is inserted the
probes.

2.2. Number of thread used in testing

In multi-threaded programs, the number of thread used
in testing is important. Table 1 is a result of the
research[2] which shows how many threads are
necessary to detect the distinctive bugs in a concurrent
program.

Table 1 shows that two threads can detect the most
number of bugs. Hence, our proposed method uses two
threads that can detect bugs the most effectively.

3. Proposal Method

3.1. The four places which can lead the order
violation easily

In order to detect the distinctive bugs in a concurrent
program, we have to enforce the testing which relates on
timing of execution between threads. However, each
bug pattern has own causes each other. Therefore, we
need to enforce effective testing the each bug pattern.

In this research, we propose the four places which
can lead order violation easily in source codes. We
detect the order violation by executing the interleaving
which can test the all places.

The places and reasons that we choose them are
following.
(i) Substitution for a shared flag variable used for

synchronization of threads
This place can detect the bugs caused by incorrect
place of statements that rewrite the value of a flag
variable.

(ii) The entry point of synchronized blocks
This place can detect the bugs caused by
defectiveness of logic for a synchronization
protocol implemented in a synchronized block.

- 381 -

 Proposal of a Testing

© The 2015 International Conference on Artificial Life and Robotics (ICAROB2015), Jan. 10-12, Oita, Japan

Fig. 3. An example of a vector generation.

(iii) The start of execution of a thread

This place can detect the bugs caused when
synchronization protocol is not implemented
because programmers suppose that a program is
executed in only one interleaving.

(iv) The end of execution of a thread
This place can detect the bugs caused by a logic
which depends on the termination of other threads.

3.2. Test codes

In this research, we execute the interleaving which can
test all places explained in section 3.1. Therefore, we
describe the test code inserted some probes at the places
in a source code of a test target program.

Fig.2 shows an example of the test code.
“preemptionPoint(int number)” method which is
member of “PreemptionPointer” class is probes. We
explain integer values of arguments in the next section.
This method can lead a context switch, as needed. This
provides various interleaving which can test each place.
The numbers in comments correspond to the numbers
which are labeled each place in section 3.1.

3.3. Reduction of number of test execution by
using similarity of interleaving

Our proposed method improves efficiency of testing by
reducing interleaving which is similar to executed one
already. It is necessary to change interleaving to the
value which can be calculated similarity. Therefore, we
generate vectors from the order and the number of
probes in a test code. The values of the generated
vectors are 1 or 0. 1 shows that the probe leads a context
switch and 0 shows that the probe does not.

Fig.3 shows an example of vector generation. When
the number of probes is n, the number of generated
vectors is the n-th power of two. We treat this vector as

Table 2. Result of experiments.

Number of
Places

All or
Reduced

Number of
Testing

Number of Testing in
Buggy Interleaving

4 All 16 7.4
4 Reduced 9 4.8
7 All 128 66.4
7 Reduced 59 27.9

interleaving and enforce testing each generated vector.
The method “preemptionPoint(int number)” leads
context switch to execute any interleaving by using
generated vector. The integer number of arguments
expresses index of elements that a vector has.
“preemptionPoint(int number)” chooses to lead context
switch or not to lead by using the elements at number of
arguments. Here, the first index of elements is 0.

Then, we calculate the similarity between vectors. In
this research, we use cosine similarity to calculate
similarity between vectors. When the similarity between
any vector and the vector which has used already is
more than a threshold, “preemptionPoint(int number)”
does not use that vector. This reduces the interleaving
which leads the same result as the result of executed one
already. Therefore, we can improve the efficiency of
testing in multi-threaded programs.

4. Discussion

4.1. Experiment for Confirmation

We have conducted experiments to confirm efficiency
of our proposed method.

The method in experiment is that we prepare two
programs which include an order violation. And we
execute the test codes that have some probes at places
which can lead order violation easily in the source codes
of those programs. They include four places and seven
places in their source codes. We enforce two tests that
use all generated vectors and reduce the vectors which
are similar to vector which has used already. We
confirm the efficiency of proposed method by
comparing the number of testing that are result of each
testing and by verifying that a bug can be detected when
tests are reduced. Here, threshold used by deciding to
reduce vectors is 0.8.

Table 2 shows the results of the experiments. Each
number is the mean value of the result of executing the
programs 10 times for each condition. “Number of
Testing Buggy Interleaving” on the line of “All” shows
that the proposed method can detect the bug definitely.
Therefore, we confirmed that the proposed method can

- 382 -

Shoichiro Kitano, Tetsuro Katayama, Yoshihiro Kita, Hisaaki Yamaba, Kentaro Aburada, Naonobu Okazaki

© The 2015 International Conference on Artificial Life and Robotics (ICAROB2015), Jan. 10-12, Oita, Japan

detect the order violation, which is one of the distinctive
bugs in a concurrent program definitely.

“Number of Testing” shows that proposed method
can reduce the number of each test execution by 56%
and 46%. And “Number of Testing Buggy Interleaving”
on the line of “Reduced” shows that the proposed
method can execute the interleaving which can lead the
bug definitely even if tests are reduced. These results
show that the proposed method reduces the number of
execution of testing by about 51% and can test to detect
order violation enough. Therefore, we confirmed that
proposed method can improve the efficiency of testing
in multi-threaded programs.

4.2. Related works

Concuerror[3] is a testing tool for Erlang.
Concuerror can test programs by executing plural
interleaving and can reduce the interleaving by
preemption bounding[4]. Therefore, Concuerror can
enforce testing efficiency. However, executed
interleaving is not focused on detecting the distinctive
bugs in a concurrent program. Therefore, it has
possibility not to detect such bugs.

Our proposed method executes the interleaving
which can test all places which can lead order violation
easily. Therefore, our proposed method can test more
efficiently for the distinctive bugs in concurrent
programs.

ConTest[5] is a testing tool for Java multi-threaded
programs. ConTest can enforce testing that relates on
timing by executing plural interleaving. However, it
does not ensure to detect bugs definitely even if
increasing the number of tests execution because it
executes plural interleaving in an ad hoc basis.
Therefore, the efficiency of its testing is poor.

Our proposed method executes the interleaving
which can test the all places which can lead order
violation easily. It reduces testing in the interleaving
which is similar to executed one already and can detect
order violation definitely. Therefore, our proposed
method tests more efficiently.

5. Conclusion

In this research, we have proposed a testing method for
order violation using similarity of interleaving. In order
to realize it, we have defined four places which can lead
order violation easily in source codes. The proposed
method reduces the interleaving by changing
interleaving to vectors which can be calculated and
calculating the similarity between a vector and used
vectors in testing already by cosine similarity. We

conducted experiments that use the proposed method.
The results show that the proposed method can detect
the order violation definitely. And it can also detect the
bugs even if it reduces the number of test execution by
about 51%. That shows it is effective for improving the
efficiency of testing in multi-threaded programs to use
our proposed method.

Future issues are as following.
 Considering the testing methods which can detect

other bug patterns
Our proposed method is focused on only order
violation. Therefore, it is not enough to detect other
bug patterns like dead lock or atomicity violation.
We need to consider the testing methods which can
detect these bugs efficiently.

 Investigating the threshold of similarity for
reducing the vectors
Depending on the length of generated vector, there
is a case that the number of generated vector which
has similarity less than threshold is too large. In
such a case, the number of vectors which is reduced
is much the same as the number of vectors which
are not reduced. We need to investigate the
appropriate threshold which is based on length of
the vectors.

 Consider the testing method which use more than
two threads
Our proposed method uses two threads for testing.
Therefore, it cannot detect the bugs which occur in
testing using more than two threads. We need to
consider it.

References

1. J. K. Ousterhout, Why Threads Are A Bad Idea(Usenix
Annual Technical Conference, San Diego, 1996)
http://www.softpanorama.org/People/Ousterhout/Threads

2. S. Lu, S. Park, E. Seo and Y. Zhou, Learning from
Mistakes - A Comprehensive Study on Real World
Concurrency Bug Characteristics, (ASPLOS '08,
Washington, 2008), pp. 329-339.

3. A. Gotovos, M. Christakis, and K. Sagonas, Test-
DrivenDevelopment of Concurrent Programs using
Concuerror, (Erlang'11, New York, 2011), pp.51-61.

4. M. Madan, Q. Shaz, Iterative Context Bounding for
Systematic Testing of Multithreaded Programs,
(PLDI ’07, Sam Diego, 2007), pp.11-13.

5. ConTest - A Tool for Testing Multi-threaded Java
Applications,
https://www.research.ibm.com/haifa/projects/verification/
contest/

- 383 -

