TFVIS: a Supporting Debugging Tool for Java Programs
by Visualizing Data Transitions and Execution Flows

Hiroto Nakamura”, Tetsuro Katayama™ ,Yoshihiro Kita*
Hisaaki Yamaba”, Kentaro Aburada®, Naonobu Okazaki”
“University of Miyazaki, 1-1 Gakuen-kibanadai nishi, Miyazaki, 889-2192 Japan
"Kanagawa Institute of Technology, 1030 Shimo-ogino, Kanagawa, 243-0292 Japan
*Oita National College of Technology, 1666 Maki, Oita, 870-0152 Japan
E-mail: tf13006@student.miyazaki-u.ac.jp, kat@cs.miyazaki-u.ac.jp, kita@earth.cs.miyazaki-u.ac.jp,
yamaba@cs.miyazaki-u.ac.jp, aburada@oita-ct.ac.jp, oka@cs.miyazaki-u.ac.jp

Abstract

TFVIS(transitions and flow visualization) can perform the visualization of data transitions and the visualization of
execution flows. The visualization of data transitions shows the flow of variable renewals in executing programs. It
becomes easier to grasp the behavior in executing the programs whose behavior is unexpected by a bug. The
visualization of execution flows shows an entire flow of the execution. It is useful to select the part where users

want the visualization of the data transitions.

Keywords: Debugging, Java, Dynamic analysis, Visualization, Slicing

1. Introduction

We need much time in order to find the cause of a bug
in programs.' We need to find the behavior of programs
which is different from ideal behavior in order to find
the cause of a bug. However, grasping the behavior is
difficult because the behavior of the program which
includes a bug becomes unexpected behavior.

We had implemented the visualization tool called
TVIS? in our previous research. TVIS visualizes the
data transitions. The data transitions in our research
show the flow of variable renewals in executing a
program.

TVIS expresses when and what value of each
variable is renewed. Programmers can grasp behavior of
a program because they can prefigure the behavior of
each variable at arbitrary timing in the program
execution by grasping the data transitions.

However, the efficiency of TVIS is lost, if the
program which TVIS uses becomes large. Moreover,

TVIS can’t visualize the data transitions between
different methods.

Therefore, this paper implements the visualization
tool TFVIS(transitions and flow visualization) which
visualizes the data transitions and the execution flows,
and shows the effectiveness of TFVIS. That is, we
combine the visualization of the execution flows with
the visualization of the data transitions in order to
visualize a larger program. Moreover, we improve the
visualization of the data transitions in order to realize
the more effective one.

2. TFVIS

We have developed the visualization tool called TFVIS.
TFVIS visualizes the data transitions and the execution
flows of Java programs. Fig.1 shows an example of the
window of TFVIS. Two small windows on the right of
the window are called the data transitions diagrams. The
diagram on the left-hand side of them is called the
execution flows diagram.

© The 2015 International Conference on Artificial Life and Robotics (ICAROB 2015), Jan. 10-12, Oita, Japan

- 376 -

Hiroto Nakamura, Tetsuro Katayama ,Yoshihiro Kita, Hisaaki Yamaba, Kentaro Aburada, Naonobu Okazaki

[Set | Refresh J|_Ret

BinSort

Main/class
+void main(String(] args)

class Mainivoid main(String(] args)

+void printArray(intf] a) 3 ? public static void main(String[] args) { [Method | :
Bin s int]] array={4,6,0,1.2}; 46012,
LSRR : printArray(array); [Call |—» |
*irl]| GelBinAmuy() T BinSart bin =new BinSort(); . l l | l l
+vold Son(ind] ary) - | Bin sort(amay); - Call |—> |
= M 0.1248, | ‘ ‘ ‘ ‘ |
| printAraylarray), = i
-) Bk =1\ | | | | | |
class BinSort/void Sort{inif] ary)
| public void Sort(intf] ary){ 1
| i LA 460,12, |
1 int]] bin=GetBinArray(); Call |—=

fior (int i=0; i< ary.length; i++){

binfary[i}=1;

} _ I
int 0 ol o
for(int i=0;i< ARRAYSIZE i++){ | Loop | |
) [
if (bin[] == 0)
continue; \
aryfeount]=i; ay 1 2 4 6
count=count+1; | count [-0 | L) 4 | s | |
} |
Back |=— | |

Fig. 1. An example of the window of TFVIS.

The list of the left side of the window of TFVIS shows
list of methods of a program. The functions of TFVIS
are as follows.

2.1. Program analysis

Firstly, we explain the program analysis used to the
visualization. TFVIS performs two types of analysis: the
structure analysis and the executions analysis.

The structure analysis is static analysis for obtaining
the information which is used to insert probes for the
execution analysis and visualize. The information which
is obtained by the structure analysis is the information
about a location where statements occur: generations
and renewals of variables, loops, and method calls.
Moreover, it includes the information about the relation
of a class and a method.

The execution analysis is dynamic analysis for
obtaining the information about behavior in executing
the programs. The information which is obtained by the
execution analysis is the information about renewals of

variables, behavior of loops and method calls, and so on.

TFVIS obtains the information by using the probes,
inserted based on the result of the structure information.
2.2. Data transitions diagram

The data transitions diagram is generated by the
visualization of the data transitions. TFVIS in Fig.1

shows the two windows of the data transitions diagram.
TFVIS can show the plural windows of the data
transitions diagram in this way.

The data transitions diagram shows renewals of a
variable. It is a table and indicates the number of
iterations of execution in a lateral direction and
indicates the line number of a source code in a vertical
direction. Normally, its tablle shows renewal value of
variables to where the renewal of the variable occurs.
The area surrounded by the red frame in Fig.1 shows
that the values of the array “array” become “0, 1, 2, 4, 6”
after the method “sort” is executed. The method
“printArray” has “array” as an argument the same as
"sort". However, the renewal value of “printArray” is
not showed, because “printArray” only refers to the
value of "array" without updating it.

The green pattern on the data transitions diagram
shows a loop, and the number on it shows the number of
the iteration of the loop. The green arrows extending
from the right of each number show the process of
iteration of the loop. In the statement “for” is
surrounded by the blue frame in Fig.1, the arrow at the
fourth loop in this example is shorter than the arrow at
the third loop; it expresses “jump” by using statement
“continue”. The mark “x” on the seventh loop
expresses the end of a loop caused by using the “break”
statement or failing the condition of a loop.

© The 2015 International Conference on Artificial Life and Robotics (ICAROB 2015), Jan. 10-12, Oita, Japan

-377 -

TFVIS: a Supporting Debugging

sheck[S]=1;
ka.-.h ety ‘or(int i=0;i< 10i++){
#8 check[1]
<N check[2]
EN check[3]
N check[4]
6 check[5]

i1 checkg]

i~

Loop
Back]

—

Fig. 2. An example of the window of the data transitions search.

2.2.1. Data transitions arrow

The data transitions arrow is a function of the data
transitions diagram, and visualizes the dependence
relations between each renewal of variables. The
dependence relations mean ones between state of a
variable and the state of other variables which is used
for the renewal of its state.

The data transitions arrow is based on the technique
of the program slicing.® It becomes easy to grasp
behavior of the data transitions in the loop and select the
standard value of the program slicing by combining the
technique of the program slicing and the data transitions
diagram.

TFVIS shows the data transitions arrow, when users
click a value of a variable on the data transitions
diagram. The data transitions arrow is the red arrow and
connects the two values which the data transitions
diagram shows with red font color. Fig.1 shows an
example of it. It can visualize the relation of the values
between methods. Therefore, it is not necessary that the
start point and the end point of the data transitions arrow
exists in the same method.

Fig.1 shows the data transitions arrow in the
window when users select the fourth value of the array
“array” which the method “sort” updates. The tip of the
data transitions arrow of Fig.1 shows the state which
finally updated the value which the user selected. When
users find the suspicious state of a variable, the data
transitions arrow supports to find the cause of it.

2.2.2. Data transitions search

The data transitions search shows the data transitions
arrow by selecting the variable and its state from the
source code on the left side of the data transitions
diagram. Fig.2 shows an example of the data transitions
search, it is the window when users selected the state of
the seventh loop of the variable “check[i]” which is
used as the conditions of the “if” statement.

2.2.3. Selection of the target ffor the visualization

The data transitions diagram can't visualize the whole of
the program at a time, because visualization typically
has the issue* that the output of it becomes huge even if
the visualized program is moderate size.

Therefore, users must select the part where they
want the visualization of the data transitions. The
execution flow diagram, which we explain in the next
section, can support this selection.

2.3. Execution flow diagram

The visualization of the execution flow visualizes an
entire flow of execution of a program and generates the
execution flow diagram. The execution flow diagram
provides the useful information in order to select the
part where users want the visualization of the data
transitions. It is based on the sequence diagram and
shows status of use of each methods and the relation of
method calls.

We explain the usage of the execution flow by using
an example of Fig.1. The column in topmost of the
execution flow diagram shows each class name, and the
figures at under of it express each method. The black
lines extending from methods are their lifelines, and the
thick parts on their lifelines are their execution
specification which means execution of the method.
When users click a execution specification, TFVIS
shows the data transitions diagram of corresponding
with it. Normally, the execution specification uses the
gray color. However, the execution specification uses
the light blue color, if the window of the data transitions
diagram of corresponding with it is being displayed.
The blue arrows on the execution flow diagram express
method calls, and the red arrows express completion of
methods.

The execution specification is surrounded by the
orange frame in Fig.1 expresses the execution which is

© The 2015 International Conference on Artificial Life and Robotics (ICAROB 2015), Jan. 10-12, Oita, Japan

- 378 -

Hiroto Nakamura, Tetsuro Katayama ,Yoshihiro Kita, Hisaaki Yamaba, Kentaro Aburada, Naonobu Okazaki

called by the only execution of the method “main” and
is the second execution of the method “printArray”.

3. Discussion

We discuss the usefulness of TFVIS.

Programmers normally use the dynamic slicing® or
trace tools®” in order to obtain data transitions in
executing a program. However, it is difficult to grasp
positional relations of each renewal, if data transitions
include the process of a loop, and so on. The
visualization of data transitions of TFVIS uses the
representation which exploits the source code and the
processes of a loop as shown in Fig.1, and can show the
data transitions in a way that is easy to understand.
Moreover, the above-mentioned technique or tools need
that users search a reference point when they analyze a
program. In the case of TFVIS, it becomes easy to
decide a reference point because the data transitions
diagram shows renewals of variables and behavior of
loops so that users understand them at a glance.

On the other hand, the range of the program which
TFVIS can visualize is still narrower than other tools
because the abstraction degree of the visualization of
TFVIS is lower. TFVIS is inferior compared with the
tool® which can visualize the multi-threading because
TFVIS can't visualize multi-threading.

We will be enable to adjust the abstraction degree of
the visualization of the execution flow in order to
enlarge the range of the program which TFVIS can
visualize. The abstraction degree of the execution flow
diagram is too low to prevent excessive expansion of its
diagram, if users want to visualize the program which
has the process of multi-thread or a larger program.
However, if it merely becomes higher, the users become
unable to grasp behavior of a program in detail.
Therefore, the information which the users obtain by the
execution flow diagram becomes not enough to select
the part where they want the visualization of the data
transitions. We combine the visualization which the
abstraction degree is low and the visualization which the
abstraction degree is high by using an idea of the
fisheye view®’. Therefore, we will enable TFVIS to
provide the enough information which users select the
part where they want the visualization of the data
transitions and visualize the larger programs.

4. Conclusion

We have implemented TFVIS in order to improve the
efficiency of debugging of Java program.

TFVIS can support to grasp behavior in executing a
program by visualizing the data transitions. The data
transitions diagram visualizes renewals of variables and
behavior of loops. Even if the data transition is the
relation between methods, the data transitions arrow can
visualize it.

Moreover, we have implemented the visualization of
execution flow in order to improve the narrowness of
the range of the visualization of the data transitions. It
improves convenience when TFVIS visualizes a large
program. Therefore, we judge that TFVIS can support to
find the cause of a bug, and is effective of debugging for
Java programs.

The future issues are as follows.

The realization of the visualization of the multi-
thread process.

The improvement of the execution flow diagram by
using an idea of the fisheye view.

References

1. Roger S. Pressman, Software Engineering A Practitioner’s
Approach 5thEdition, McGraw-Hill Science (2001).
Tetsuro Katayama et al, Proposal of a Visualizing Method
of Data Transitions to Support Debugging for Java
Programs, Journal of Robotics Networks and Artificial
Life, 1(2) (2011) 111-115.

Mark Weiser, Programmers Use Slices When
Debugging,Communications of the ACM, 25 (1982) 446-
452

W. De Pauw et al, Execution patterns in object-oriented
visualization, In Proc. 4th COOTS (1998) 219-234.

H Agrawal, JR Horgan, Dynamic Program Slicing,
SIGPLAN Notices 25(6) (1990) 246-256 .

Kouhei Sakurai et al, Traceglasses: A Trace-based
Debugger for Realizing Efficient Navigation, Information
Processing Society of Japan, 3(3) (2010) 1-17.

Salman Mirghasemi et al, Querypoint Moving
Backwards on Wrong Values in the Buggy Execution,
ESEC/FSE (2011) 436-439.

Jan Lonnberg et al, Java replay for dependence-based
debugging, PADTAD '11 (2011) 15-25.

W Furnas, Generalised sheye views, In Proc ACM
SIGCHI 86 Conference on Human Factors in Computing
Systems (1986) 16-23.

2.

© The 2015 International Conference on Artificial Life and Robotics (ICAROB 2015), Jan. 10-12, Oita, Japan

-379 -

