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Abstract 

TFVIS(transitions and flow visualization) can perform the visualization of data transitions and the visualization of 
execution flows. The visualization of data transitions shows the flow of variable renewals in executing programs. It 
becomes easier to grasp the behavior in executing the programs whose behavior is unexpected by a bug. The 
visualization of execution flows shows an entire flow of the execution. It is useful to select the part where users 
want the visualization of the data transitions. 
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1. Introduction 

We need much time in order to find the cause of a bug 
in programs.1 We need to find the behavior of programs 
which is different from ideal behavior in order to find 
the cause of a bug. However, grasping the behavior is 
difficult because the behavior of the program which 
includes a bug becomes unexpected behavior. 

We had implemented the visualization tool called 
TVIS2 in our previous research. TVIS visualizes the 
data transitions. The data transitions in our research 
show the flow of variable renewals in executing a 
program.  

TVIS expresses when and what value of each 
variable is renewed. Programmers can grasp behavior of 
a program because they can prefigure the behavior of 
each variable at arbitrary timing in the program 
execution by grasping the data transitions. 

However, the efficiency of TVIS is lost, if the 
program which TVIS uses becomes large. Moreover, 

TVIS can’t visualize the data transitions between 
different methods. 

Therefore, this paper implements the visualization 
tool TFVIS(transitions and flow visualization) which 
visualizes the data transitions and the execution flows, 
and shows the effectiveness of TFVIS. That is, we 
combine the visualization of the execution flows with 
the visualization of the data transitions in order to 
visualize a larger program. Moreover, we improve the 
visualization of the data transitions in order to realize 
the more effective one.  

2. TFVIS 

We have developed the visualization tool called TFVIS. 
TFVIS visualizes the data transitions and the execution 
flows of Java programs. Fig.1 shows an example of the 
window of TFVIS. Two small windows on the right of 
the window are called the data transitions diagrams. The 
diagram on the left-hand side of them is called the 
execution flows diagram.  
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called by the only execution of the method “main” and 
is the second execution of the method “printArray”. 

3. Discussion 

We discuss the usefulness of TFVIS. 
Programmers normally use the dynamic slicing5 or 

trace tools6,7 in order to obtain data transitions in 
executing a program. However, it is difficult to grasp 
positional relations of each renewal, if data transitions 
include the process of a loop, and so on. The 
visualization of data transitions of TFVIS uses the 
representation which exploits the source code and the 
processes of a loop as shown in Fig.1, and can show the 
data transitions in a way that is easy to understand. 
Moreover, the above-mentioned technique or tools need 
that users search a reference point when they analyze a 
program. In the case of TFVIS, it becomes easy to 
decide a reference point because the data transitions 
diagram shows renewals of variables and behavior of 
loops so that users understand them at a glance. 

On the other hand, the range of the program which 
TFVIS can visualize is still narrower than other tools 
because the abstraction degree of the visualization of 
TFVIS is lower.  TFVIS is inferior compared with the 
tool8 which can visualize the multi-threading because 
TFVIS can't visualize multi-threading. 

We will be enable to adjust the abstraction degree of 
the visualization of the execution flow in order to 
enlarge the range of the program which TFVIS can 
visualize. The abstraction degree of the execution flow 
diagram is too low to prevent excessive expansion of its 
diagram, if users want to visualize the program which 
has the process of multi-thread or a larger program. 
However, if it merely becomes higher, the users become 
unable to grasp behavior of a program in detail. 
Therefore, the information which the users obtain by the 
execution flow diagram becomes not enough to select 
the part where they want the visualization of the data 
transitions. We combine the visualization which the 
abstraction degree is low and the visualization which the 
abstraction degree is high by using an idea of the 
fisheye view9.  Therefore, we will enable TFVIS to 
provide the enough information which users select the 
part where they want the visualization of the data 
transitions and visualize the larger programs. 

4. Conclusion 

We have implemented TFVIS in order to improve the 
efficiency of debugging of Java program.  

TFVIS can support to grasp behavior in executing a 
program by visualizing the data transitions. The data 
transitions diagram visualizes renewals of variables and 
behavior of loops. Even if the data transition is the 
relation between methods, the data transitions arrow can 
visualize it. 

Moreover, we have implemented the visualization of 
execution flow in order to improve the narrowness of 
the range of the visualization of the data transitions.  It 
improves convenience when TFVIS visualizes a large 
program. Therefore, we judge that TFVIS can support to 
find the cause of a bug, and is effective of debugging for 
Java programs. 

The future issues are as follows. 
 The realization of the visualization of the multi-

thread process. 
 The improvement of the execution flow diagram by 

using an idea of the fisheye view. 
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