

© The 2015 International Conference on Artificial Life and Robotics (ICAROB 2015), Jan. 10-12, Oita, Japan

TFVIS: a Supporting Debugging Tool for Java Programs
by Visualizing Data Transitions and Execution Flows

Hiroto Nakamura*, Tetsuro Katayama* ,Yoshihiro Kita✝
Hisaaki Yamaba*, Kentaro Aburada‡, Naonobu Okazaki*

*University of Miyazaki, 1-1 Gakuen-kibanadai nishi, Miyazaki, 889-2192 Japan
✝Kanagawa Institute of Technology, 1030 Shimo-ogino, Kanagawa, 243-0292 Japan

‡Oita National College of Technology, 1666 Maki, Oita, 870-0152 Japan
E-mail: tf13006@student.miyazaki-u.ac.jp, kat@cs.miyazaki-u.ac.jp, kita@earth.cs.miyazaki-u.ac.jp,

yamaba@cs.miyazaki-u.ac.jp, aburada@oita-ct.ac.jp, oka@cs.miyazaki-u.ac.jp

Abstract

TFVIS(transitions and flow visualization) can perform the visualization of data transitions and the visualization of
execution flows. The visualization of data transitions shows the flow of variable renewals in executing programs. It
becomes easier to grasp the behavior in executing the programs whose behavior is unexpected by a bug. The
visualization of execution flows shows an entire flow of the execution. It is useful to select the part where users
want the visualization of the data transitions.

Keywords: Debugging, Java, Dynamic analysis, Visualization, Slicing

1. Introduction

We need much time in order to find the cause of a bug
in programs.1 We need to find the behavior of programs
which is different from ideal behavior in order to find
the cause of a bug. However, grasping the behavior is
difficult because the behavior of the program which
includes a bug becomes unexpected behavior.

We had implemented the visualization tool called
TVIS2 in our previous research. TVIS visualizes the
data transitions. The data transitions in our research
show the flow of variable renewals in executing a
program.

TVIS expresses when and what value of each
variable is renewed. Programmers can grasp behavior of
a program because they can prefigure the behavior of
each variable at arbitrary timing in the program
execution by grasping the data transitions.

However, the efficiency of TVIS is lost, if the
program which TVIS uses becomes large. Moreover,

TVIS can’t visualize the data transitions between
different methods.

Therefore, this paper implements the visualization
tool TFVIS(transitions and flow visualization) which
visualizes the data transitions and the execution flows,
and shows the effectiveness of TFVIS. That is, we
combine the visualization of the execution flows with
the visualization of the data transitions in order to
visualize a larger program. Moreover, we improve the
visualization of the data transitions in order to realize
the more effective one.

2. TFVIS

We have developed the visualization tool called TFVIS.
TFVIS visualizes the data transitions and the execution
flows of Java programs. Fig.1 shows an example of the
window of TFVIS. Two small windows on the right of
the window are called the data transitions diagrams. The
diagram on the left-hand side of them is called the
execution flows diagram.

- 376 -

Hiroto Nakamur

© The 2

The list of th
list of metho
are as follows

2.1. Program

Firstly, we e
visualization.
structure anal

The struc
the informati
execution ana
is obtained b
about a locat
and renewals
Moreover, it
of a class and

The exec
obtaining the
the programs
execution ana
variables, beh
TFVIS obtai
inserted based

2.2. Data tran

The data tr
visualization

ra, Tetsuro Katay

2015 Internati

he left side of
ods of a progr
s.

m analysis

explain the p
. TFVIS perfo
lysis and the e
ture analysis i
ion which is
alysis and visu
by the structur
tion where sta
s of variable
includes the i

d a method.
cution analys
e information
. The informa
alysis is the in
havior of loop
ins the inform
d on the result

nsitions diagr

ransitions dia
of the data

yama ,Yoshihiro K

ional Conferen

the window o
ram. The func

program analy
orms two type
executions ana
is static analy
used to inser
ualize. The in
re analysis is
atements occu
es, loops, and
information ab

sis is dynam
about behav

ation which is
nformation ab

ps and method
mation by us
t of the structu

ram

agram is gen
transitions. T

Kita, Hisaaki Yam

nce on Artifici

of TFVIS sho
ctions of TFV

ysis used to
s of analysis:
alysis.
ysis for obtain
rt probes for
formation wh
the informati

ur: generatio
d method ca
bout the relati

mic analysis
ior in executi

s obtained by
bout renewals
d calls, and so
sing the prob
ure informatio

nerated by
TFVIS in Fi

Fig. 1. An exam

maba, Kentaro Ab

ial Life and R

ows
VIS

the
the

ning
the

hich
tion
ons
alls.
tion

for
ting
the

s of
 on.

bes,
on.

the
ig.1

sh
TF
tra

va
ite
ind
dir
va
Th
tha
aft
“p
"so
no
va

sh
the
fro
ite
su
fou
the
“c
ex
sta

ample of the win

burada, Naonobu

Robotics (ICAR

hows the two w
FVIS can sh
ansitions diagr

The data tr
ariable. It is
erations of e
dicates the lin
rection. Norm

ariables to wh
he area surrou
at the values o

fter the meth
printArray” ha
ort". Howeve

ot showed, be
alue of "array"

The green p
hows a loop, an
e iteration of
om the right
eration of th
urrounded by t
urth loop in t
e third loop;
ontinue”. T

xpresses the en
atement or fai

ndow of TFVIS

 Okazaki

ROB 2015), Ja

windows of th
how the plur
ram in this wa
ansitions diag
a table and

execution in
ne number of
mally, its tabl
here the renew
unded by the
of the array “a
hod “sort” i
as “array” as
er, the renewa
ecause “print
" without upda
pattern on th
nd the number
f the loop. Th

of each num
he loop. In
the blue fram
this example i
it expresses “

The mark “
nd of a loop c
ling the condi

S.

an. 10-12, Oit

he data transit
ral windows
ay.
gram shows r

d indicates th
 a lateral d

f a source cod
le shows rene
wal of the va

e red frame in
array” become
is executed.

an argument
al value of “p
tArray” only
ating it.
he data transi
er on it shows
he green arro
mber show th

the statem
me in Fig.1, th

is shorter than
“jump” by us

“x” on the
caused by usin
ition of a loop

ta, Japan

tions diagram
of the data

renewals of a
he number o
direction and

de in a vertica
ewal value o
ariable occurs
n Fig.1 shows
e “0, 1, 2, 4, 6
The method

t the same as
printArray” is
refers to the

tions diagram
the number o

ows extending
he process o

ment “for” is
e arrow at the
n the arrow a
sing statemen
seventh loop

ng the “break”
p.

m.
a

a
f
d
al
f

s.
s
6”
d
s
s
e

m
f
g
f
s
e

at
nt
p
”

- 377 -

© The 2

2.2.1. Data tr

The data tra
transitions d
relations bet
dependence
variable and
for the renew

The data
of the progr
behavior of th
standard valu
technique of t
diagram.

TFVIS sh
click a valu
diagram. The
connects the
diagram show
example of it
between meth
start point and
exists in the s

Fig.1 sho
window when
“array” which
data transitio
finally update
users find th
transitions arr

2.2.2. Data tr

The data tran
arrow by sel
source code
diagram. Fig.
search, it is th
the seventh l
used as the co

2015 Internati

ransitions arro

ansitions arrow
diagram, and
tween each
relations mea
the state of o

wal of its state.
transitions arr
ram slicing.3
he data transit
ue of the prog
the program s

hows the data
ue of a varia
e data transitio
e two values
ws with red
t. It can visua
hods. Therefo
d the end poin
same method.
ows the dat
n users select
h the method

ons arrow of
ed the value w
he suspicious
row supports

ransitions sear

nsitions searc
lecting the va

on the left
.2 shows an e
he window wh
loop of the v
onditions of th

ional Conferen

ow

w is a funct
visualizes t

renewal of
an ones betw
other variable

row is based o

It becomes
tions in the loo

gram slicing b
slicing and the

transitions ar
able on the
ons arrow is th
 which the
font color.

alize the relati
ore, it is not ne
nt of the data t

ta transitions
t the fourth va
“sort” update
Fig.1 shows

which the user
state of a va

to find the cau

rch

ch shows the
ariable and its

side of the
example of the
hen users sele

variable “che
he “if” stateme

Fig. 2. A

nce on Artifici

tion of the d
the dependen
variables. T

ween state of
es which is us

on the techniq
easy to gra

op and select
y combining
e data transitio

rrow, when us
data transitio

he red arrow a
data transitio
Fig.1 shows

ion of the valu
ecessary that
transitions arr

s arrow in
alue of the arr
s. The tip of
the state wh

r selected. Wh
ariable, the d
use of it.

data transitio
s state from
data transitio

e data transitio
ected the state
eck[i]” which
ent.

An example of t

ial Life and R

data
nce
The
f a
sed

que
asp
the
the
ons

sers
ons
and
ons
an

ues
the

row

the
rray
the

hich
hen
data

ons
the
ons
ons
e of
h is

2.2

Th
the
ha
the

wa
ex
se

2.3

Th
en
ex
pr
pa
tra
sh
me

an
ex
fig
lin
thi
sp
W
sh
wi
gr
the
dia
Th
me
me

or

the window of

Robotics (ICAR

2.3. Selection

he data transit
e program at

as the issue4 th
e visualized p

Therefore,
ant the visua

xecution flow
ction, can sup

3. Execution f

he visualizatio
ntire flow of e
xecution flow
ovides the us

art where use
ansitions. It i
hows status of
ethod calls.

We explain
n example of
xecution flow
gures at unde
nes extending
ick parts on
ecification w

When users cl
hows the data
ith it. Normal
ay color. How
e light blue co
agram of cor
he blue arrow
ethod calls, an
ethods.

The execut
ange frame in

the data transit

ROB 2015), Ja

of the target f

ions diagram
a time, beca

hat the output
rogram is mod
users must s
alization of
diagram, wh

pport this selec

flow diagram

on of the exe
xecution of a
diagram. Th

seful informa
ers want the
is based on t
f use of each m

the usage of t
Fig.1. The c

diagram show
r of it expres
from method

n their lifel
which means
lick a execu
a transitions
lly, the execu
wever, the ex
olor, if the win
rresponding w
s on the execu
nd the red arr

ion specificat
n Fig.1 expres

ions search.

TFVIS: a Supp

an. 10-12, Oit

for the visuali

can't visualiz
ause visualiza
t of it become
derate size.

select the par
the data tra

hich we expla
ction.

m

ecution flow
a program and
he execution
ation in order

visualization
the sequence
methods and t

the execution
column in to

ws each class
ss each metho

ds are their life
lines are the
execution of

ution specific
diagram of

ution specifica
xecution spec
ndow of the d
with it is bei
ution flow dia
rows express

tion is surrou
sses the execu

porting Debugging

ta, Japan

ization

e the whole o
ation typically
s huge even i

rt where they
ansitions. The
ain in the nex

visualizes an
d generates the

flow diagram
r to select the
n of the data

diagram and
the relation o

flow by using
opmost of the
name, and the
od. The black
elines, and the
eir execution
f the method
ation, TFVIS
corresponding
ation uses the
cification uses
data transitions
ing displayed
agram express
completion o

unded by the
ution which is

g

f
y
f

y
e

xt

n
e

m
e
a
d
f

g
e
e
k
e
n
d.
S
g
e
s
s

d.
s
f

e
s

- 378 -

Hiroto Nakamura, Tetsuro Katayama ,Yoshihiro Kita, Hisaaki Yamaba, Kentaro Aburada, Naonobu Okazaki

© The 2015 International Conference on Artificial Life and Robotics (ICAROB 2015), Jan. 10-12, Oita, Japan

called by the only execution of the method “main” and
is the second execution of the method “printArray”.

3. Discussion

We discuss the usefulness of TFVIS.
Programmers normally use the dynamic slicing5 or

trace tools6,7 in order to obtain data transitions in
executing a program. However, it is difficult to grasp
positional relations of each renewal, if data transitions
include the process of a loop, and so on. The
visualization of data transitions of TFVIS uses the
representation which exploits the source code and the
processes of a loop as shown in Fig.1, and can show the
data transitions in a way that is easy to understand.
Moreover, the above-mentioned technique or tools need
that users search a reference point when they analyze a
program. In the case of TFVIS, it becomes easy to
decide a reference point because the data transitions
diagram shows renewals of variables and behavior of
loops so that users understand them at a glance.

On the other hand, the range of the program which
TFVIS can visualize is still narrower than other tools
because the abstraction degree of the visualization of
TFVIS is lower. TFVIS is inferior compared with the
tool8 which can visualize the multi-threading because
TFVIS can't visualize multi-threading.

We will be enable to adjust the abstraction degree of
the visualization of the execution flow in order to
enlarge the range of the program which TFVIS can
visualize. The abstraction degree of the execution flow
diagram is too low to prevent excessive expansion of its
diagram, if users want to visualize the program which
has the process of multi-thread or a larger program.
However, if it merely becomes higher, the users become
unable to grasp behavior of a program in detail.
Therefore, the information which the users obtain by the
execution flow diagram becomes not enough to select
the part where they want the visualization of the data
transitions. We combine the visualization which the
abstraction degree is low and the visualization which the
abstraction degree is high by using an idea of the
fisheye view9. Therefore, we will enable TFVIS to
provide the enough information which users select the
part where they want the visualization of the data
transitions and visualize the larger programs.

4. Conclusion

We have implemented TFVIS in order to improve the
efficiency of debugging of Java program.

TFVIS can support to grasp behavior in executing a
program by visualizing the data transitions. The data
transitions diagram visualizes renewals of variables and
behavior of loops. Even if the data transition is the
relation between methods, the data transitions arrow can
visualize it.

Moreover, we have implemented the visualization of
execution flow in order to improve the narrowness of
the range of the visualization of the data transitions. It
improves convenience when TFVIS visualizes a large
program. Therefore, we judge that TFVIS can support to
find the cause of a bug, and is effective of debugging for
Java programs.

The future issues are as follows.
 The realization of the visualization of the multi-

thread process.
 The improvement of the execution flow diagram by

using an idea of the fisheye view.

References

1. Roger S. Pressman, Software Engineering A Practitioner’s
Approach 5thEdition, McGraw-Hill Science (2001).

2. Tetsuro Katayama et al, Proposal of a Visualizing Method
of Data Transitions to Support Debugging for Java
Programs, Journal of Robotics Networks and Artificial
Life, 1(2) (2011) 111-115.

3. Mark Weiser, Programmers Use Slices When
Debugging,Communications of the ACM, 25 (1982) 446-
452.

4. W. De Pauw et al, Execution patterns in object-oriented
visualization, In Proc. 4th COOTS (1998) 219-234.

5. H Agrawal, JR Horgan, Dynamic Program Slicing,
SIGPLAN Notices 25(6) (1990) 246-256 .

6. Kouhei Sakurai et al, Traceglasses: A Trace-based
Debugger for Realizing Efficient Navigation, Information
Processing Society of Japan, 3(3) (2010) 1-17.

7. Salman Mirghasemi et al, Querypoint : Moving
Backwards on Wrong Values in the Buggy Execution,
ESEC/FSE (2011) 436-439.

8. Jan Lönnberg et al, Java replay for dependence-based
debugging, PADTAD '11 (2011) 15-25.

9. W Furnas, Generalised sheye views, In Proc ACM
SIGCHI 86 Conference on Human Factors in Computing
Systems (1986) 16-23.

- 379 -

