

© The 2015 International Conference on Artificial Life and Robotics (ICAROB 2015), Jan. 10-12, Oita, Japan

Single Image Dehazing on Mobile Device Based on GPU Rendering Technology

Yuanyuan Shang

College of Information Engineering, Capital Normal University, 56 Xisanhuanbei Road

Beijing, 100048, P.R. China

Yue Meng

College of Information Engineering, Capital Normal University, 56 Xisanhuanbei Road

Beijing, 100048, P.R. China

Email: syy@bao.ac.cn, mengyue19890119@outlook.com

www.cnu.edu.cn

Abstract

Image dehazing utilizes a very complex algorithm that requires intensive filtering and floating-point arithmetic operations.
Consequently, processing speed is the most significant bottleneck in its application in some vision tasks such as mobile
platforms. In this paper, we propose an optimized single image parallel processing dehazing algorithm for mobile
platforms and implement it on a Windows Phone device based on GPU rendering technology.

Keywords: Fog degradation model, GPU rendering, Image Dehazing, Parallel processing, Windows Phone.

1. Introduction

A variety of approaches to image dehazing has been

proposed in the literature. They include titles such as Fast

visibility restoration from a single color or gray lever

image, by Tarel and Nautiere1; Visibility restoration in

bad weather from a single image, by Tan2; Single image

dehazing, by Fattal; and Single image haze removal using

dark channel prior, by He3.

With the continuous improvements in image dehazing,

the result of haze removal is getting increasingly better.

However, processing speed is the most significant

bottleneck to the application of dehazing in some vision

tasks, especially on mobile platforms.

Graphic processing unit (GPU) rendering technology

is widely used in image processing applications to speed

up image processing algorithms. In this paper, we propose

an optimized single image parallel processing dehazing

algorithm for mobile platforms (based on J.P. Tarel’s

method), and implement it on a Windows Phone device

based on GPU rendering technology. The DirectX

programming interface, a powerful tool for accessing

GPU resources, can be used on the Windows Phone

platform. Thus, we chose it to implement and test the

algorithm on the Windows Phone device.

2. Algorithm Overview

The fundamental concept underlying this fast visibility

- 261 -

Yuanyuan Shang, Yue Meng

© The 2015 International Conference on Artificial Life and Robotics (ICAROB 2015), Jan. 10-12, Oita, Japan

restoration algorithm, which was proposed by Tarel, is the

fog degradation model. Koshimider proposed the fog

degradation model, and Tarel summarized it as in

Equation (1):

Iሺx, yሻ ൌ ܴሺݔ, ሻݕ ቀ1 െ
௏ሺ௫,௬ሻ

ூೞ
ቁ ൅ ܸሺݔ, ሻݕ (1)

The restored image can thus be obtained by calculating

R(x).

V(x, y) in Equation (1) can then be estimated by

following the four steps below:

(1) Calculate the minimum value of RGB

components W(x, y) in the original image:
 Wሺx, yሻ ൌ min௖∈ሼோ,ீ,஻ሽሺܫ஼ሺݔ, ሻሻݕ

where I (x, y) is the original input image.

(2) Find the median of W(x, y):
 Aሺx, yሻ ൌ ݉݁݀݅ܽ݊ௌೡሺݓሺݔ, ሻሻݕ

where Sv is the template size of the median filter.

(3) Calculate the difference between W and A,

then calculate the absolute value of the difference:
	Bሺx, yሻ ൌ A െ݉݁݀݅ܽ݊ௌೡሺabsሺWെ Aሻሻሺݔ, 	ሻݕ
where Sv is the template size of the median filter.

(4) Find the maximum value of the minimum:

Vሺx, yሻ ൌ max݌ ቀmin൫ܤሺݔ, ,ݔሻ,ܹሺݕ ,ሻ൯ݕ 0ቁ

On obtaining a value for V(x, y), the restored image

R(x, y) can then be calculated using Equation (2), which is

derived from Equation (1):5

ܴሺݔ, ሻݕ ൌ
ூሺ௫,௬ሻି௏ሺ௫,௬ሻ

ଵିೇሺೣ,೤ሻ
಺ೞ

 (2)

where factor p is used to control the intensity of haze

removal, and can be adjusted for different images.

3. Algorithm Parallelization

Some parts of the algorithm cannot be applied to the GPU,

in which case the CPU is used. A reasonable division of

work between CPU and GPU is the key factor that

determines the efficiency of the process.

In this paper, we divide the algorithm into three main

parts: white balance, restoration core processing, and tone

mapping. Some actions cannot be accomplished in GPU

because of its structure. Therefore, we have to transfer

these parts of the process to CPU. Accordingly, the white

balance algorithm described by Tarel8 and tone mapping

have to be divided into several parts, as depicted in Fig.s

1 and 2, in order to conveniently implement these parts

separately in CPU and GPU.

White Balance

GPUCPU

Ph
as
e

Get minimum
value of 3 channels

Compute quantile

Get mean value of
selected

Get WB parameters
WB correction

Other restoration
processes

White balance
correction

Fig. 1. Division of white balance algorithm between CPU

and GPU

Tone Mapping

GPUCPU

P
h
as
e

Calculate
dI and dR

Get U(x ,y)

Get MG

Get T(x ,y)

Fig. 2. Division of tone mapping algorithm between CPU

and GPU

All processes in the core processing section, which

obtains V(x, y) in four steps and R(x, y) in the final step,

can be carried out in GPU; thus, none of this work needs

to be transferred to CPU. This is very beneficial for rapid

processing. However, because we need to get the process

results for neighboring pixels when performing the

second median filter to obtain B(x, y), the process has to

be split into the two parts: calculating A and calculating R,

- 262 -

© The 2

as previously

the white bal

of the resto

reducing the c

4. Implemen

As mentioned

shaders, one

programmed

method. In

language cal

used to prog

corresponds t

All the pixels

program ar

sequentially.

Fig. 3. is

optimized to

and paramete

given before

discussed in t

Whol

Fl
o
w
 2

Fl
o
w
 1

Fl
o
w
 3

Fl
o
w
 4

(

Fig. 3. Workf

2015 Internati

y discussed. In

lance process

oration core

cost of reassem

ntation on W

d before, the G

e of which

in order to i

the DirectX

lled high-leve

gram the shad

to only a sing

s being proces

re processed

the workflow

implement o

ers have the

e. The detail

the previous s

e Defog Algo

GPU (Display M

Source Image

W

A

B

R

U

T
(Destination Ima

flow of the ov

ional Conferen

n this process

is combined

processing

mbly.

Windows Phon

GPU processo

h, pixel sha

implement th

X programm

el shader lan

ders.9 A piec

gle pixel, not

ssed by the sam

d in parall

w chart of the

on the GPU, w

same name a

s of each tr

ection.

orithm

CPU Memory)

e

age)

verall algorithm

nce on Artifici

s, the final ste

with the first

process, the

ne

or contains a s

ader, has to

e image deha

ming interface

nguage (HLSL

ce of HLSL

the whole im

me piece of H

lel, rather

e whole algor

where all text

as in the Equa

ransfer step w

(System Memor

WB parameter

Gamma
Correction
parameters

Tone Mapping
Parameter

m optimized f

ial Life and R

ep of

t step

ereby

set of

o be

azing

e, a

L) is

code

mage.

HLSL

than

rithm

tures

ation

were

ry)

for G

arro

repr

tech

the

mem

met

clas

ID3

mem

Con

to tr

set

the

HLS

5.

Fig

the
usin
usin

Robotics (ICAR

Note that in

ows represen

resent parame

hniques in Dir

movement o

mory, in order

thods. Param

ss containing

3D11Buffer to

mory have

ntext->PSSetC

ransmit the pa

by this functi

pixel shader.

SL and C++ c

Comparisons

. 4 shows the
original imag

ng GPU, and
ng the origina

(a)

 (b)

 (c)

Fig. 4. Exp

As can be se

ROB 2015), Ja

PU implem

the flows acr

nt data copie

eter transmis

rectX program

f data from

r to get access

eter transmis

the parameter

o store the

to be cre

ConstantBuffe

arameters to th

ion the same

This is the o

codes.

s and Analyse

process resul
ges, 4(b) and
d 4(c) and 4
al algorithm.

)

perimental res

en in Fig. 4,

Image Dehazi

an. 10-12, Oit

mentation

ross CPU and

ies while str

ssions. These

mming. Data

display mem

s to these data

ssion is more

rs to be trans

parameters i

eated. Subse

er() function h

he shader, wit

as the registe

only interactio

es

ults. Fig.s 4(a)
d 4(e) are the
4(f) are the

 (d)

 (e)

 (f)

sults on hazy

the process r

ng Mobile Device

ta, Japan

d GPU, curved

raight arrow

are two key

copy refers to

mory to system

a via the usua

e complex. A

smitted and an

n the display

equently, th

has to be used

th the start slo

er index set in

on between th

) and 4(d) are
defog results
defog results

images

result of GPU

e

d

ws

y

o

m

al

A

n

y

e

d

ot

n

e

e
s
s

U

- 263 -

Yuanyuan Shang, Yue Meng

© The 2015 International Conference on Artificial Life and Robotics (ICAROB 2015), Jan. 10-12, Oita, Japan

processing is very close to that of the original algorithm.

In Fig. 2(b), which has more intricate details, the details

of the processed image are not as clear as the original

algorithm because of changes in the filtering method;

however, they are still within the acceptable range.

During the implementation, process, we adjusted the

intensity of the tone mapping, such that the restored

image is more vivid than the image restored by the

original algorithm; the color of the image is more

realistic.

The focus of our research is improvement of the

processing speed. Table 1. shows the processing time of

the original algorithm running in CPU and our optimized

algorithm running in CPU and GPU. All the tests were

conducted on a Windows Phone device with Snapdragon

MSM8260A CPU and 1 GB RAM.

Resolution CPU CPU+GPU
640 × 480 11.122 s 0.463 s
800 × 600 18.814 s 0.680 s

1024 × 768 33.382 s 1.127 s
1920 × 1080 105.50 s 3.227 s

Table 1. Time cost of CPU only versus CPU+GPU

algorithms

In the above chart, it can clearly be seen that there is

an improvement in the processing speed when using GPU

technology; in the case of the large image, the speed

increased as much as 3,000%. This is because we have

taken advantage of parallel computing and the

floating-point arithmetic of GPU. The most

time-consuming part of the original algorithm is bilateral

filtering, which becomes a virtual real-time process when

running in GPU. Furthermore, other simple operations

have also been accelerated in GPU to various degrees.

Accelerations of these parts significantly reduced the

overall process time of the whole algorithm.

6. Conclusion

With increasing use of image dehazing methods,

defogging results are improving significantly. However,

the efficiency of the algorithms used in these methods is

still very low. GPU technology has developed rapidly in

recent years, to the point where general-purpose

computing for GPU can be exploited to speed up the

image dehazing process. Following parallelization and

optimization, we implemented our proposed optimized

single image parallel processing dehazing algorithm on a

Windows Phone device. Comparisons and analyses show

that the efficiency of the algorithm is significantly

improved and the defog effect excellent. The algorithm,

implemented in GPU, is written as a Windows Phone

application and will be published in the Windows Phone

app store. In summary, in terms of effectiveness and

efficiency, this design has achieved the expected goals.

Acknowledgement

This work is supported by National Natural Science
Foundation of China (11178017, 61373090, 61303104,
61203238 ） , Beijing Natural Science Foundation
（4132014）, The Project of Construction of Innovative
Teams and Teacher Career Development for Universities
and Colleges Under Beijing Municipality, and Beijing
Center for Mathematics and Information Interdisciplinary
Sciences.

References

1. J. Tarel and N. Hautière, Fast Visibility Restoration from a
Single Color or Gray Level Image. ICCV, 2009, pp: 2201–
2208

2. R. Tan, Visibility in bad weather from a single image.
CVPR, 2008, pp: 1–8.

3. K. He, J. Sun, and X. Tang, Single image haze removal
using dark channel prior. CVPR, 2009, pp: 1956–1963.

4. J. Tarel and N. Hautière, Fast Visibility Restoration from a
Single Color or Gray Level Image. ICCV, 2009, pp: 2201–
2208.

5. Yue Meng and Yuanyuan Shang, Design of Real-time
Haze Image Restoration System Based on FPGA
Technology. Information Technology Journal, 2013, pp:
7481–7488.

6. J. Tarel and N. Hautière, Fast Visibility Restoration from a
Single Color or Gray Level Image. ICCV, 2009, pp: 2201–
2208.

7. P. Shirley, J. Ferwerda, E. Reinhard, and M. Stark.
Photographic tone reproduction for digital images. In
ACM SIGGRAPH’ 02, 2002, pp:267–276.

8. J. Tarel and N. Hautière, Fast Visibility Restoration from a
Single Color or Gray Level Image. ICCV, 2009, pp: 2201–
2208.

9. HLSL and Pixel Shader for XAML Developers, Walt
Ritscher. O’reilly Media, 1st edition July 2012

- 264 -

