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Abstract 

This paper is devoted to the problem of state estimate of discrete-time stochastic systems. A low-complexity and 
high accuracy algorithm is presented to reduce the computational load of the traditional interacting multiple model 
algorithm with heterogeneous observations for location tracking. By decoupling the x and y dimensions to simplify 
the implementation of location, updated information is iteratively passed based on an adaptive fusion decision. 
Simulations show that the algorithm is more computationally attractive than existing multiple model methods. 

Keywords: data fusion, interacting multiple model algorithm, location tracking, wireless sensor networks. 

1. Introduction 

Date fusion deals with the problem of how to extract 
and utilize useful information contained in multiple sets 
of data in order to estimate unknown parameters or 
processes1, which has been widely applied in military 
and civilian fields, e.g., target tracking and localization, 
air traffic control, guidance and navigation, fault 
diagnosis, surveillance and monitoring. Estimation 
fusion is one of the important applications involving 
wireless sensor networks (WSNs), but the WSNs have 
very limited sensing range and communication 
bandwidth which restrict the application of the 
centralized signal processing method. In other words, 
not only are accurate positioning algorithms essential to 
useful location-estimation systems, but also to reduce 

energy consumption is worth developing low-
complexity schemes for WSNs2. 
State estimate problem of discrete-time Markovian jump 
linear system (MJLS) is always the focus of interest in 
the community of maneuvering target tracking. 
Multiple-model (MM) algorithms (such as generalized 
pseudo-Bayesian (GPB), interacting multiple model 
(IMM), variable-structure MM (SVMM)) are generally 
considered as mainstream approach to address this 
problem. Among them, IMM algorithm proposed by 
Blom3 is most prevalent.  
Nevertheless, the high accurate location estimation for 
maneuvering target based on the traditional IMM 
algorithm requires models interacting and inverse 
operations. The location data fusion algorithm with an 
IMM technique has high computational complexity, and 
direct implementation of the IMM algorithm may be too 
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