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Abstract 

In microfluidic lab-on-chip devices, electrowetting on dielectric (EWOD) are widely used for various applications. 
To manipulate the micro droplet to achieve the desired path and accurate target position by using electrowetting 
technique are one of the common applications. In this paper, the motion of droplet is modeled as a single rigid 
body driven by both linear and nonlinear forces. In order to evaluate the potential of controller, the sliding mode 
controller is applied to this nonlinear microfluidic system. The effect of bounded disturbances is included in the 
designed controller. Simulation results provided the feasibility of the sliding mode controller for EWOD 
microfluidic manipulation under the effect of bounded disturbances. 

Keywords: Sliding mode control, Electro-wetting on Dielectric device, Lab-on-chip, Microfluidics. 

1. Introduction 

Electro-wetting on Dielectric (EWOD) is a microfluidic 
transport method utilizing the disturbance behavior of 
electrical field on the free surface energy and wet contact 
angle of a droplet. As shown in Fig. 1, the contact angle 
and droplet shape can be changed by applying voltages on 
one-side of a droplet, thus inducing the droplet to move. 
The technique is well-known for its precise manipulation 
of droplet movement. Currently, many lab-on-chip devices, 
equipped with EWOD micro-droplet transport are widely 
used for various applications such as in DNA sequencing 
[1], protein analysis and detection [2], Disease diagnosis [3, 
6] molecular biology processes [4], detection of 
triglyceride in human fluid [5] and concentration detection 
of L-amino acid [7]. With its immense capability to 
precisely transport tiny droplets with little power 
consumption, EWOD technique has also been used in 
micro pimps [8] and micro-conveyors [9]. Pamula et al. 

[10] created a micro-cooling system for IC circuit cooling, 
in which EWOD required less pumping power than typical 
mechanical pumps. In dealing with complicated analysis, 
diagnosis and detection processes, more complex array-
typed EWOD devices have been created to support 
sophisticated lab-on-chip platforms. Multiple droplet 
manipulation becomes essential and enquires more precise 
control algorithms. Bhattacharjee and Najjaran [11] 
mentioned about the need of feedback control of a single 
droplet position in a digital micro fluidic system (DMS) 
and presented simulation results of the feedback control 
system. Also, the work by Oprins et al. [12] proposed the 
modeling and control of droplet motion of the electro-
wetting system. Based on the proposed models presented 
in [11] and [12], various nonlinear control techniques can 
be applied to control droplet position on top of a EWOD 
lab-on-chip platform. 
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The control parameters are selected as follows, c=100, 
k=90and ε=3.The simulation results of droplet position and 
velocity are shown in Figs. 4(a) and 4(b). Position tracking 
error of the droplet is shown in Fig. 4(c). The control input 
signal is shown in Fig 4(d). Therefore, it is clear that the 
sliding mode controller is feasible to track the step 
reference signal accurately under the effect from the 
disturbance. 

 

 
   (a) 

 
   (b) 

 
   (c) 

 
   (d) 

Fig. 4.Simulation results of tracking step reference signal 

4.3. Sinusoidal Reference Signal  
The sinusoidal function is the reference signal of the 
control EWOD microfluidic system expressed as  

 6
1 ( ) 1670 10 sin( )rx t t       (21) 

where the frequency  = 22 /rad s  

with the initial condition  (0) [0 0]Tx  .                  (22) 

 
     The control parameters, c, k and ε are selected as the 
same values in the previous case. The simulation results of 
droplet position and velocity as well as position tracking 
error of the droplet are shown in Fig. 5 (a), (b), and (c), 
respectively. The control input signal is shown in Fig. 5 (d). 
The controller with selected parameters is able to track the 
sinusoidal reference signal, so that the droplet can move 
along desire path as shown in Fig 5(a). The plot of velocity 
versus time is shown in Fig 5(b). At certain range of time   
for example 0.091t  s., the plot in figure 4 (b) is similar   
to the first derivative of the displacement in figure 4 (a) as 
considering from the amplitude and the phase difference of 
the plots from both figures. Thus, this plot is reasonable. 
The plot of position tracking error versus time in Fig 5(c) 
shows that the sliding mode control provides low position 
tracking error. Thus, the sliding mode controller is feasible 
to track the sinusoidal reference signal accurately even 
though the system is affected by the bounded disturbance. 
Therefore, the sliding mode controller is an appropriate      
technique for the position control of the micro droplet in    
the EWOD microfluidic system.  
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(c) 

 
(d) 

Fig. 5.Simulation results of tracking sinusoidal reference signal 

 

5. Conclusions 
The sliding mode control with exponential rate reaching 
law is feasible to control the microfluidic droplet motion in 
the EWOD microfluidic system under the effect of 
bounded disturbance signal. For the step reference signal, 
the controller provides the step response with no overshoot 
and tracks the reference signal accurately under the 
disturbance. In the case of the sinusoidal reference signal, 
the designed sliding mode controller can also provide 
accurate tracking.  
 

6. References  

[1] K. Brady, “Electrowetting for DNA sequencing on chip”, 2004 
NNIN REU Research Accomplishments, pp. 26-27, 2004. 

[2] V. Srinivasan, V.K. Pamula, P. Paik, and R.B. Fair, “Protein 
stamping for MALDI mass spectrometry using an electrowetting-
based microfluidic platform”, in Proc. of SPIE-The International 
Society for Optical Engineering, vol. 5591, 2004, pp. 26-32. 

[3] V. Srinivasan, V.K. Pamula, M.G. Pollack, and R.B. Fair, “Clinical 
diagnostics on human whole blood, plasma, serum, urine, saliva, 
sweat, and tears on a digital microfluidic platform”, in Proc. the 7th 
International Conference on Miniaturized Chemical and 
Biochemical Analysis Systems, Squaw Valley, California, U.S.A., 
2003, pp1287-1290. 

[4] M.G. Pollack, P.Y. Paik,, A.D. Shenderov, V.K. Pamula, F.S. 
Dietrich, and R.B. Fair, “Investigation of electrowetting-based 
microfluidics for real-time PCR applications”, in Proc. the 7th 
International Conference on Miniaturized Chemical and 
Biochemical Analysis Systems, Squaw Valley, California, U.S.A., 
2003, pp.619-622. 

[5] C.S. Yu, M.Y. Lin, H.T. Hu, Y.C. Hu, and H.Y. Chou, “A droplet-
based device for triglycerides colorimetric measurement”, Tamkang 
Journal of Science and Engineering, vol. 8, no. 3, pp. 211-216, 
2005. 

[6] V. Srinivasan, V. Pamula, M. Pollack, and R. Fair, “A digital 
microfluidic biosensor for multianalyte detection”, in Proc. of IEEE 
The Sixteenth Annual International Conference on Micro Electro 
Mechanical Machine (MEM-03Kyoto), Kyoto, Japan, 2003, pp. 
327-330. 

[7] W. Satoh, H. Hosono, K. Morimoto and H. Suzuki, “Micro analysis 
system with an integrated microfluidic system based on 
electrowetting”, in Proc. of the fourth IEEE Conference on 
Sensors( IEEE SENSORS 2005), Irvine, CA, U.S.A., Oct. 30-Nov. 3, 
2005, pp. 37-40. 

[8] K.S. Yun, I.J. Cho, J.U. Bu, G.H. Kim, Y.S. Jeon, C.J.(CJ) Kim, 
and E. Yoon, “A micropump driven by continuous electrowetting 
actuation for low voltage and low power operations”,in Proc. of the 
14th IEEE international conference on Micro Electro Mechanical 
Systems (MEMS 2001), Interlaken, Switzerland, pp. 487-490. 

[9] I. Moon, and J. Kim “Using EWOD (electrowetting-on-dielectric) 
actuation in a micro conveyor system”, Sensor and Actuators A: 
Physical, vol. 130-131, pp. 537-544, Aug. 2006. 

[10] V. K. Pamula and K. Chakrabarty, “Cooling of integrated circuits 
using droplet-based microfluidics”, in Proc. of  the 13 th ACM 
Great Lakes Symposium on VLSI (GLSVLSI’03), Washington, DC, 
U.S.A., April 28-29, 2003, pp.1-4. 

[11] B. Bhattacharjee, and H. Najjaran, “Simulation of droplet position 
control in digital microfluidic systems”, Journal of Dynamic 
Systems, Measurement, and Control, vol. 132, iss. 1, pp. 014501-1 - 
014501-3, Jan. 2010. 

[12] H. Oprins, B. Vandevelde, and M. Baelmans, “Modeling and 
control of electrowetting induced droplet motion”, Micromachines, 
(3)1, pp. 150-167, 2012. 

[13] H. Ren, R.B., Fair, M.g., Pollack, and E.J. Shaughnessy, “Dynamics 
of electrod-wetting droplet transport ”, Sensor and Actuators B 87 
(2002), pp.201-206. 

[14] J. Berthier, Microdrops and digital Microfluidics,  Norwich New 
York:William Andrew, 2008. 

[15] J. Berthier, P. Dubois, P. Clementz, P. Claustre, C. Peponet, Y. 
Fouillet, “Actuation potential and capillary forces in electrowetting 
based microsystem”, Sensor and Actuators A 134 (2007) 471-479. 

[16] J. Liu, and X. Wang, “Advanced sliding mode control for 
mechanical systems” Beijing, Tsinghua University Press and Berlin 
Heidelberg, Springer-Verlag, 2011 

[17] W. Gao and J.C. Hung,”Variable Structure Control of Nonlinear 
Systems: A New Approach”, IEEE Transasction on Industrial 
Electronics, Vol. 40, No.1 February, 1993, pp. 45-55. 

[18] C. Phongsomboon, “Mobility control of a droplet on top of a flat 
plate”, M.S. thesis, Dept. Mechanical Engineering, King Mongkut 
University of Technology Thonburi,Bangkok, Thailand, 2012. (in 
Thai)  

[19] R. W. Fox, P. J., Pritchard, and A. T., Macdonald, “Introduction to 
fluid mechanics”, 7thedition, John Wiley and Sons, 2010.  

 
 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-1

0

1

2

3

4

5

6x 10
-4

t(sec)

e(
t)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-2

0

2

4

6

8

10x 10
-5

t(sec)

u(
t)

- 21 -




