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Abstract 

We present a method of fast motion detection as an abnormal motion based on cross correlation. Since the camera 
view is not in perpendicular with motion direction, the velocity of motion is not uniform spatially. Instead of object 
detection directly, we separate an image into several blocks. We calculate the cross correlation of the pixel intensity 
series in these blocks between a current and a previous frame. The maximum correlation is achieved at certain 
delay. This delay shows a shift of a similar pattern between the current and the previous frame. To localize an 
abnormal motion, we employ a hierarchical block size. The performance of the proposed method is experimentally 
shown. 

Keywords: Abnormal motion, cross correlation, delay, hierarchical block size. 

1. Introduction 

In recent years, abnormal motion detection has 
attracted great research attention in computer vision. 
Most current surveillance systems only provide reactive 
security by enabling the analysis of events after the 
event has already occurred — what is really needed by 
the security community is proactive security to help 
prevent future attacks. 

Many approaches on video event analysis are based 
on the object trajectories extracted from video. 
Abnormal events can be detected through a prior 
learning of normal events or, without a learning process, 
by analyzing the trajectory result directly. 

Jiang et al. [1] used spatial and temporal context and 
performed frequency-based analysis to detect 
anomalous video events. The normal observation is 
modeled by hidden Markov model (HMM). This 
research detected the anomalous car trajectory on the 
road from top view. Kiryati et al. [2] recognized an 
abnormal human behavior from high camera view. 

Before the detection phase, they included a training 
phase for normal condition. Baranwal et al. [3] detected 
an abnormal indoor motion in a static background 
environment. They trained various motions using radial 
basis functions networks (RFBN). Park et al. [4] used 
clustering of motion based on similarity measurement of 
a feature space. They detected an abnormal motion, 
especially in a different direction case, from high 
camera view. 

In this paper, we propose a fast motion detection 
with a camera view not in perpendicular with motion 
direction, as an abnormal motion among walking 
motion. We capture a scene from a 2 meter height and 
more for outdoor scenes, as shown in Fig. 1. Due to 
camera view not in perpendicular with motion direction, 
motion velocityin the image is not uniform spatially. 
We need to extend the method in [5,6]. 

It requires no foreground segmentation, no motion 
recognition and no object detection. We analyze the 
object’s velocity through a certain delay where the 
maximum correlation occurred. 
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3.2. Calculation of a shift magnitude based on 
cross correlation. 

As was mentioned in section 2, cross correlation is a 
standard method of estimating the degree to which two 
series are correlated [7]. This calculation is one 
dimensional computation. 

As a simple example, consider two rectangular 
pulses shown in Fig. 3, in blue and green. The 
correlation series is shown in red.  

 

Fig.3. Example of cross correlation 
 

The maximum correlation is achieved at a delay of 3. 
Considering the equations above, what is happening is 
that the second series is being slid past the first, at each 
shift the sum of the product of the newly lined up terms 
in the series is computed. This sum will be large when 
the shift (delay) is such that similar structure lines up.  

Delay of the maximum correlation can be assumed 
as a shift of an object. This calculation of shift based on 
cross correlation is simpler than 2D correlation, because 
2D correlation needs a template, then slides it over a 
specified range to get the maximum value. This 
calculation is also simpler than a method proposed in 
[6]. It is more accurate than optical flow based on 
Lucas-Kanade tracker which relies on feature points. 

To provide one dimensional data series, we scan an 
image pixel as in Fig. 4. 

To provide one dimensional data series as shown in 
Fig. 4, we perform the below algorithm, in which all the 
variables are in an integer type: 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
for (i = 0 : mn) 
 hor_1[i] = pixel[i/m][i-(i/m)m]; 
 ver_1[i] = pixel[imodn][i/n]; 
 hor_2[i] = pixel[i/m][(i/m+1)m-1-i]; 
 ver_2[i] = pixel[(i/n+1)n-1-i][i/m]; 
end for; 
 

Here m and n are weight and height of an image 
block, respectively. mod is a modulo operation. 
Pixel[a][b] is a pixel intensity at ath row and bth column 
of the image block. 

Then we calculate the cross correlation between 
current and previous image frame at the same image 
block. The maximum correlation is achieved at a certain 
delay. For example, the maximum correlation between 
hor_1(t) and hor_1(t-1) occurs at delayhor_1.: We will get 
other delays, i.e. delayhor_2, delayver_1, delayver_2.  
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Where {1,2}. Then the shift magnitude at a current 
image block is calculated as, 
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Let us define the identity of |shift(i,j)|, I(i,j), as below,  
 



 


otherwise0

0|),(|if1
),(
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               (4) 

Here, i and j are block’s position at i-th row and j-th 
column, respectively. 

Fig. 4. Arrangement of pixel data to provide one 
dimensional data series. 

(a) hor_1 (b) hor_2 (c) ver_1 (d) ver_2 

(a) (b) 

(c) (d) 
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3.3. Determining a fast motion 

To detect a fast motion in a frame, we calculate the 
maximum of shift magnitude among the blocks within a 
frame. We do this search in hierarchical block sizes, as 
depicted in Fig. 5. First, block size mn pixels, we will 
detect a fast motion at block_fast1. Second, block size 
mh pixels, we will detect a fast motion at block_fast2. 
Finally, block size 2mh pixels, we will detect a fast 
motion at block_fast3, where h is image height. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Operation in m×n block size level. For each block, we 
have a shift magnitude, |shift(i,j)| defined by Eq. 
(3),where i{0,…,r-1}and j{0,…,c-1}. Then 
ablock_fast1 is defined by, 
 
  ),(max1_ jishiftfastblock                  (5) 

 
We record block_fast1 position at r1-th row and c1-th 
column.  
 
Operation in m×h block size level. For each column, we 
have an average of shift magnitude, avg_shiftj, where 
j{0,…,c-1}. 
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Thenblock_fast2 is defined as, 
 

 
 jshiftavgfastblock _max2_                 (7) 

 
We get block_fast2 position at c2-th column. 
 
Operation in 2m×h block size level. For each column, 
we have an average of shift magnitude, avg_shiftk, 
where k{0,…,c-2}. 
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Thenblock_fast3 is defined as, 
 
  kshiftavgfastblock _max3_              (9) 

 
We get block_fast3 position at c3-th column. 
 
Finally, we will detect a fast motion at cF column, ifc1 = 
c2 = cF or c1 = c3 = cF or c2 = c3 = cF or c1 = c2 = c3 = cF. 

4. Experimental Result 

The experimental environment is as follows: 
Operating system is Windows 7 ultimate; the processor 
is Intel® core™ i7 CPU 870 @2.93GHz and the used 
software is Microsoft Visual Studio 2010.  

For experiment, we use outdoor scene, as Fig. 1, 
with many people do normal motion (walking) and a 
person does abnormal motion (running), with video 
frame rate and the size of a frame 30 fps and 320x180 
pixels, respectively.  

(b) (c) 
Fig. 5.Hierarchical block size. 

(a) m×n (b) m×h (c) 2m×h 

(a) 

m 

n 
h 

block(0,0) 

block(r-1,c-1) 

block(0,c-1) 
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