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Abstract- In this research article a cascade control system is presented for steering control of control of nonholonomic autonomous 
mobile robot vehicle. The propose system consist of a master controller and two slave controllers. The master controller is based on 
Fuzzy Logic Controller (FLC) which computes the required speed and angular speed needed by the two motors to drives the robot. 
Fuzzy logic is used to generate target trajectory movement. The two slave controllers are Proportional+Integral+Derivative (PID) 
controllers which ensured the desired speeds that needed for the both DC motors. PID controller parameters were tuned according to 
four ranges of speeds using model based tuning method. In addition, the control law is offered to select a suitable rule base for fuzzy 
controller in order to ensure the system is stable. The proposed cascaded controller is implemented on a nonholonomic mobile robot 
and the results have shown that, the proposed controller achieved the desired turning angle and the mobile robot tracks the target 
efficiently. 
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I. INTRODUCTION 

 
Autonomous navigation is the most important topic of 
artificial intelligence, various approaches have been tried 
to solve navigation problems [1]. The researchers have 
done studies to both holonomic and nonholonomic mobile 
robots [2-3]. Autonomous navigation is the ability of a 
mobile robot to move in an environment that is available 
to achieve a goal, without interacting with humans. In 
recent years, various new approaches to steering mobile 
robots have been developed. In 2004 Marichal , designed 
and present a fuzzy logic control system to decide how a 
mobile robot steer the wheel to achieve the desired 
orientation [4]. So, the desired target can be achieved 
simply by tuning the steering wheel towards the target. 
Besides that PID feedback controller is employed in the 
system to improve the performance of the system [5]. The 
purposed cascade fuzzy -PID controller is implemented on 
the mobile robot and the results showed the proposed 
method can achieve the desired turn angle to ensure that 
the autonomous mobile robot can reach the target set. 

II. KINEMATIC MODEL OF THE 
NONHOLONOMIC MOBILE ROBOT 

 
A. Differential Steering System 

In the differential steering system to prevent slippage and 
achieve pure rolling motion, the mobile robot rotates 
around a point on the same axis in the two-wheel drive. 
This point is called the instantaneous center of rotation 
(ICR). By changing the drive speeds of two wheels move, 
the ICR will also be moved and will be followed by 

different trajectories [6].  Figure 1 shows the differential 
steering system of mobile robot.  

 
Fig 1: Differential steering system of the mobile robot 

In this figure (x, y) is reference frame,(X, Y) is robot 
coordinates fame, R is the position of robot in (x, y), θ 
represents orientation angle of robot, r is wheel radius, 2d: 
distance between two wheels, uR/L are the speed of right 
and left wheels respectively, u, ω are the speed and 

angular speed of robot and R and L : angular speed of 
right and left wheels respectively 

 The speed of the center of mass of the robot is 
orthogonal to the axis of the wheel. It is also assumed that 
the mass of wheels and wheel inertias is neglected. 
Meanwhile, center of mass of the mobile robot is located 
in the middle of the axis connecting the drive wheels. 

 p defines the origin of robot coordinate system 
with coordinate (x, y).  θd is the angle between X-axis of 
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and
tnet 2

2
      (11)

    

Thus, the Parameters of PID controller can be 
calculated by comparing the coefficients form 
(9).  The PID parameters results for four 
different speeds of right wheel and left wheel are 
shown in Table 2. 

Table 2: The result of the PID model based 
tuning for right wheel and left wheel 

  Right Wheel PID Tuning 

PID 
0-1.0 
RPS 

1.0-2.5 
RPS 

2.5-3.0 
RPS 

3.0-3.5 
RPS 

Kp 2.2769 25.248 41.079 176.7889 

Ki 4.6592 16.6431 17.1421 152.4726 

Kd 16.7932 210.1562 39.5797 431.8131 

 

VII. Results & Simulation 

a) Discussions 

The speed and angular speed of mobile robot 
was determined by the number of encoder pulses 
for the right wheel and the left wheel. The PID 
controller is used to produce the same speed of 
the right wheel and left wheel in order to make 
the mobile robot move in straight line.  

The robot system provides a stable speed 
property after implementing an onboard PID 
controller on free wheels time response 
experiments. Figure 9, 10, 11, 12, 13, 14, 15 and 
16 show eight examples of the speeds time 
response with different speeds for left wheel and 
right wheel. The rising time increase when the 
desired speed is higher. The range of oscillations 
gets smaller for higher speeds. Through the 
experiences, the PID controller is also available 
for low speed such as 0.5 RPS except model 
based tuning method controller, but the 

oscillation is more drastic. The fast tuning PID 
controller shows the best result for free wheel 
time response experiments. 

 

Figure 9: Time response of left wheel speed with 3.25 
[RPS] step input, Fast Tuning blue, Normal Tuning red, 

Model Based Tuning green 

 

Figure 10: Time response of left wheel speed with 2.75 
[RPS] step input, Fast Tuning blue, Normal Tuning red, 
Model Based Tuning green 

 

Figure 11: Time response of left wheel speed with 1.75 
[RPS] step input, Fast Tuning blue, Normal Tuning red, 
Model Based Tuning green 
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Left Wheel PID Tuning 

PID
0-1.0 
RPS 

1.0-2.5 
RPS 

2.5-3.0 
RPS 

3.0-3.5 
RPS 

Kp 1.9571 21.4094 42.5378 72.0978 
Ki 4.286 24.088 15.916 34.523 
Kd 18.8677 318.7978 82.9586 366.2725
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Figure 12: Time response of left wheel speed with 0.5 
[RPS] step input, Fast Tuning blue, Normal Tuning red, 
Model Based Tuning green 

 

Figure 13: Time response of right wheel speed with 3.25 
[RPS] step input, Fast Tuning blue, Normal Tuning red, 
Model Based Tuning green 

 

Figure 14: Time response of right wheel speed with 2.75 
[RPS] step input, Fast Tuning blue, Normal Tuning red, 
Model Based Tuning green 

 

Figure 15: Time response of right wheel speed with 1.75 
[RPS] step input, Fast Tuning blue, Normal Tuning red, 
Model Based Tuning green 

 

Figure 16: Time response of right wheel speed with 0.5 
[RPS] step input, Fast Tuning blue, Normal Tuning red, 
Model Based Tuning green 

Experiments were conducted to make a 
comparison of the test results between four 
ranges of speeds using Fast Tuning PID 
controller parameters in Table 2. The results are 
presented in Figures 17, 18, 19 and 20. 

In the Figures, the horizontal axis is the traveling 
distance of mobile robot in centimeters and the 
vertical axis is the speeds of the wheel rotations 
defined by Equation (5.7) and Equation (5.8). 
The data plotted in the Figure 19 and 20 provide 
evidence that the speeds in wheel rotations of the 
Fast Tuning PID controller for the right wheel 
and the left wheel are in unstable condition at 
lower desired speed. The mobile robot shows 
high speeds from beginning of moving distance 
and does not move ahead to the target point in 
straight line tracking. In Figure 18 and Figure 19, 
we deduce that the small differences between the 
right wheel of speeds and the left wheel of 
speeds. Therefore, the mobile robot will move 
stably in tracking straight line. 

 

Figure 17: Comparison of the speeds in wheel rotations in 
straight line tracking at 3.25 [RPS] desired speed 
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Figure 18: Comparison of the speeds in wheel rotations in 
straight line tracking at 2.75 [RPS] desired speed 

 

Figure 19: Comparison of the speeds in wheel rotations in 
straight line tracking at 1.75 RPS desired speed 

 

Figure 20: Comparison of the speeds in wheel rotations in 
straight line tracking at 0.5 RPS desired speed 

 

From the experimental result studies, the mobile 
robot shows a stable movement in straight line 
tracking after using Fast Tuning PID controller 
for the right wheel and the left wheel for high 
desired speed as shown in Figure 17 and Figure 
18 respectively. These PID control parameter 

were determined by performing fine tuning 
experiment explained. The system of two wheels 
of the mobile robot works concurrently with 
different PID controller parameter to perform a 
stable movement in straight line tracking for 
high desired speed. 

VIII. Conclusion 
 

In this article, an analysis and design of fuzzy 
control law for steering control of the developed 
nonholonomic mobile robot are presented. PID 
controller method is exploited to guarantee the 
stability of the straight line and turning trajectory. 
The proposed fuzzy controller with PID 
controller is implemented on the developed 
mobile robot. The system has performed well 
and satisfactory results are obtained which show 
that the proposed fuzzy controller and PID 
controller achieved the desired turn angle thus it 
can make the autonomous mobile robot moving 
to the target successfully.A system for two 
wheels of a mobile robot moves simultaneously 
with different parameters of PID controller to 
ensure the stability of movement in a straight 
line. 
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