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Abstract

Previously, weighted kernel regression (WKR) for solving small samples problem has been reported. In the original
WKR, the simple iterative learning technique and the formulated learning function in estimating weight parameters are
designed only to solve non-noisy and small training samples problem. In this study, an extension of WKR in solving
noisy and small training samples is investigated. The objective of the investigation is to extend the capability and
effectiveness of WKR when solving various problems. Therefore, four new learning functions are proposed for
estimating weight parameters. In general, the formulated learning functions are added with a regularization term instead
of error term only as in the existing WKR. However, one free parameter associated to the regularization term has firstly
to be predefined. Hence, a simple cross-validation technique is introduced to estimate this free parameter value. The
improvement, in terms of the prediction accuracy as compared to existing WKR is presented through a series of

experiments.
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1. Introduction

In general, the kernel based regression aims at regressing
the unknown function based on the available training
samples. In real world applications, to obtain sufficient
training samples is too expensive as when dangerous real
measurements have to be performed [1]. There are
numerous techniques in machine learning for regression.
However, all the available techniques mainly focus in
solving sufficient training samples problem. As most
existing techniques perform well under sufficiently large
training samples, the performance of those techniques
degrades as the size of samples decreases.

Weighted Kernel Regression (WKR) [2] has proved to
solve small sample problems with high accuracy by
assuming all the available training samples are free from
error. An example of regression using WKR is shown in
Fig. 1. To design a WKR, one must estimate the weight
parameters, W, before it can be used to predict unseen

samples. The estimation of the weight parameters depends
on the learning functions and learning techniques.

In general, the ability of WKR is only restricted to
solve non-noisy training samples. Hence, the formulated
learning function and simple iterative learning technique
in WKR may fail in estimating weight parameters if the
observed training samples are corrupted by noise. An
example of regression using WKR in the presence of
noise is shown in Fig. 2. Therefore, in this study, four
learning functions are considered to particularly solve
small and noisy samples problems.

2. Weighted Kernel Regression

Given training samples, {x;, y;}i=,, where n is the number
of training samples, input is denoted as x; € RY, and
y; € Ris the target output. WKR is the technique to
regress the output space by mapping the input space fRd
toR. In general, WKR is a modified Nadaraya-Watson
kernel regression (NWKR) [3] by expressing the weight
based on the observed samples through a kernel function.
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The existing WKR relies on the Gaussian kernel function

as given in Eq. (1).
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where h is the smoothing parameter. As in NWKR, the
selection of smoothing parameter, h, is important to
compromise between smoothness and fitness. As in
existing WKR, Eq. (2) is employed to determine the value
of h.
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where 1 <k <n-1and ||Xk+1|| > ”Xk” :
The kernel matrix K = [Kj], where i = j =1,..., n, with a
generalised kernel matrix based on the Gaussian kernel, is
given in Eq. (3). The matrix K transforms the linear
observed samples to non-linear problems by mapping the
data into a higher dimensional feature space.
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In WKR, the most popular function for regression
problems is used which to minimize the RSS to estimate
the weight parameters, W.

min f (W )< min|Kw - y|’ @
Once the optimum weight is estimated, the model is ready
to predict any unseen samples (test samples). The test
samples can be predicted by using Eq. (5).
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3. Extension of Weighted Kernel Regression

In general, minimizing the error term only may lead to
numerical  instabilities and bad  generalization
performance. The instability yields a high variance model
which potentially produces large differences of weight
parameter values given different training samples, even
minor perturbation of the same training samples. In
general, this instability can be addressed by restricting the
class of permissible solution by introducing the
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Fig 2. Regression using WKR in the presence of noise

regularization term to the formulated learning function.

The regularization term is usually of the form of a penalty

term for complexity, such as restrictions for smoothness.
Therefore, all the investigated learning functions will

comprise not only the error term but also the
regularization term as given in Eq. (6).
flearning = ﬁa + f;“ (6)

where f. refers to error term and f, refers to regularization
term.

The addition of regularization term is to avoid the
magnitude of estimated weight parameters to be very
large which may lead to over-fitting problem. Hence, the
addition of regularization term gives advantages to the
regression quality. In general, the error term and
regularization term can be formulated either with L; norm
or L, norm function. Therefore, the four learning
functions are formulated with combination of L; and L, as
error term and regularization term based on the WKR
concept are proposed in this study.
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Table 1. Parameter setting of GA

Generation 300

Population size 100

Probability of cross-over 0.7
Probability of mutation 0.001

The error term with L, norm is a popular choice and
most widely used for linear model but it is less robust.
Meanwhile, error term in L; norm form is not sensitive
and produces robust estimation as compared to L, norm
but L; norm function is not differentiable. For
regularization term, the L, norm offers lower variances
model by shrinking the estimated weight parameter values
as compared to learning function without regularization
term. The L, norm regularization term is also known as
Tikhonov regularization [4] or Ridge regularization [5]
for solving matrix inverse problem to learning problems
with good generalization. L; norm regularization not only
offers lower variances model but also produces sparseness
solution which offers a better generalization. The
sparseness solution forces some estimated weight
parameter value equals to zero. Also, L; norm
regularization term creates accurate predictive models that
also have interpretable or parsimonious representations.
The proposed formulated learning functions, which are
based on learning function in the existing WKR, are given
in Eq. (7) to Eq. (10).

frar, (W) = argmin (|KW = Y|> + X |[W|?)
w

Jrar, (W)
frir, (W)

Fram, (W) = argmin (|[KW = Y|, + A [W]l,)
W

argmin (||KW =Y
w

2w
I 1W1l) ®

argmin (|[KW = Y|, + A |W|]*)
W 9)

(10
where K is kernel matrix, W is weight parameter to be
estimated, Y is observed output domain values, II. ll; is Ly
norm function, II.11? is L, norm function, and A is a free
parameter that control the generalization of the regressed
function.

In general, the formulated learning functions can be
categorized into two types; closed form solution function
and non-closed form solution function. Closed form
solution function can be derived analytically as compared
to non-closed form solution function when estimating the
weight parameters. For non-closed form function, there is
no analytical solution can be obtained as the function is
nondifferentiable. As evolutionary computing offers an
effective way to optimize i.e. estimate the weight
parameters for non-differentiable function, hence, Genetic
Algorithm (GA) is introduced as a learning technique.
The formulated learning function with L; norm term
either as error term or regularization term is considered as
non-closed form solution function.

Different Learning Functions for

Prior to estimating the weight parameters based on
new formulated learning functions, an associated A value
has firstly to be estimated. Cross-validation is a technique
to evaluate model in order to generalize the predictive
performance when predicting unseen samples. The need
of cross-validation is important in model selection as
some models parameters, such as A value has to be
estimated. In general, cross-validation separates the
available training samples into two sets, called the
training set and validation set. Training set is used to build
the model and validation set is used to evaluate the model
based on the selected models parameter with respect to
the cross-validation error. Typically, the cross-validation
error is measured based on MSE performance criterion.
The model with the lowest cross-validation error is then
used as a final model which possibly offers a better
generalization performance.

There are various cross-validation techniques
available in literatures such as hold-out method, K-fold
cross-validation, and leave-one-out cross-validation
(LOOCV). In general, LOOCV is very expensive to
compute but it is able to retrieve a lot of information from
the available training samples. As the focus of the study is
to solve small and limited training samples problem,
LOOCYV is found to offer several advantages in terms of
information retrieval and computational time.

In general, LOOCV separates the available n training
samples into a training set of size n-1 and a validation of
size 1. For every selected models parameter, there are n
different combinations of training and validation set. The
lowest cross-validation on the validation set is used as an
indicator to select the final model.

4. Experiment, Result, and Discussion

Since the learning function which possesses L; norm term
is considered as non-closed form solution function, an
analytic form solution cannot be obtained when
minimizing the corresponding learning function in
estimating the weight parameter. This drawback has led to
the use of GA. The parameter settings of GA are
summarised in Table 1. A specific function is employed
with three different Gaussian noise distributions,
N~(0,0.1), N~(0,0.3), and N~(0,0.5).

The quality of prediction for every learning function
for three different problems is tabulated in Table 2, Table
3, and Table 4. In general, the learning function with L,
norm of error term offers a better generalization as
compared to the learning function with L; norm of error
term.
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Table 2. Results of 100 experiments to predict 1- exp(-2u)* withn =5
and contaminated by Gaussian noise, N~(0,0.1) with various
learning functions

Learning Average Standard .

Functiua MSE: Deviation MEnMSE, |- MR SE
LaRs 0.00707 0.00517 0.00184 0.01834
LoRy 0.00704 0.00474 0.00221 0.01831
LR, 0.01201 0.00926 0.00199 0,02916
LoRy 0.00930 0.00681 0.00181 0.02440

Table 3. Results of 100 experiments to predict 1- exp(-2u)* withn =5
and contaminated by Gaussian noise, N~(0,0.3) with various
learning functions

Learning Average Standard .

Function | MSE | Deviation | Mif MSE | Max MSE
LoRs 0.04832 0.04122 0.01180 0.16416
L. R, 0.05048 0.04831 0.00630 0.17170
LR, 0.06403 0.05314 0.00871 0.19740
LoRy 0.05940 0.05353 0.00862 0.19563

Table 4. Results of 100 experiments to predict 1- exp(-2u)* withn =5
and contaminated by Gaussian noise, N~(0,0.5) with various
learning functions

Standard

Learning Average

Function MSE Deviation MCMSE . | Max MSE
LoRy 0.11101 0.10993 0.03022 0.4474
LoRy 0.10767 0.11666 0.00402 0.45964
LR, 0.14788 0.14201 0.02225 0.56058
Loy 0.13753 0.13729 0.02376 0.56251

5. Conclusions

An extension of WKR is investigated to address
regression problem with noisy training samples. The
investigation emphasized on formulation of learning
functions. Prior to these two investigations, the free
parameter, A value has firstly to be estimated. The

improvement, in terms of quality of prediction is
experimented and presented. In general, the selection of
learning technique must be based on the formulated
learning function, which implies the dependency of
problem being solved. Also, the quality of prediction is
mainly determined by the selection of L, norm as error
term regardless of norm type of regularization term.
Hence, the inclusion of regularization term is a must in
formulating the learning function.
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