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Abstract 

Previously, weighted kernel regression (WKR) for solving small samples problem has been reported. In the original 
WKR, the simple iterative learning technique and the formulated learning function in estimating weight parameters are 
designed only to solve non-noisy and small training samples problem. In this study, an extension of WKR in solving 
noisy and small training samples is investigated. The objective of the investigation is to extend the capability and 
effectiveness of WKR when solving various problems. Therefore, four new learning functions are proposed for 
estimating weight parameters. In general, the formulated learning functions are added with a regularization term instead 
of error term only as in the existing WKR. However, one free parameter associated to the regularization term has firstly 
to be predefined. Hence, a simple cross-validation technique is introduced to estimate this free parameter value. The 
improvement, in terms of the prediction accuracy as compared to existing WKR is presented through a series of 
experiments.  
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1. Introduction 

In general, the kernel based regression aims at regressing 
the unknown function based on the available training 
samples. In real world applications, to obtain sufficient 
training samples is too expensive as when dangerous real 
measurements have to be performed [1]. There are 
numerous techniques in machine learning for regression. 
However, all the available techniques mainly focus in 
solving sufficient training samples problem. As most 
existing techniques perform well under sufficiently large 
training samples, the performance of those techniques 
degrades as the size of samples decreases. 

Weighted Kernel Regression (WKR) [2] has proved to 
solve small sample problems with high accuracy by 
assuming all the available training samples are free from 
error. An example of regression using WKR is shown in 
Fig. 1. To design a WKR, one must estimate the weight 
parameters, W, before it can be used to predict unseen 

samples. The estimation of the weight parameters depends 
on the learning functions and learning techniques.  

In general, the ability of WKR is only restricted to 
solve non-noisy training samples. Hence, the formulated 
learning function and simple iterative learning technique 
in WKR may fail in estimating weight parameters if the 
observed training samples are corrupted by noise. An 
example of regression using WKR in the presence of 
noise is shown in Fig. 2.  Therefore, in this study, four 
learning functions are considered to particularly solve 
small and noisy samples problems. 

2. Weighted Kernel Regression 

Given training samples, ሼݔ, ሽୀଵݕ
 , where n is the number 

of training samples, input is denoted as ݔ d , and     
ݕ  is the target output. WKR is the technique to 
regress the output space by mapping the input space d

to . In general, WKR is a modified Nadaraya-Watson 
kernel regression (NWKR) [3] by expressing the weight 
based on the observed samples through a kernel function. 
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