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Abstract 

Spiking neural network is a system that qualitatively reproduce the nervous system. It was shown in previous 
researches that the performance of associative memory task in all-to-all connected networks is higher when they are 
composed of Class II neurons than Class I neurons. The Izhikevich model in its Class II mode, however, does not 
have this performance boost. In this study, we focus on phase resetting curve as an index that reflects neuronal 
properties related to neuron classes in detail. 
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1. Introduction 

Nervous system has robust, autonomous, and power-
efficient information processing capacity. Neurons 
generate overshoot of their membrane potential called 
spike, when sufficiently large stimulus is applied, which 
travel through their axon and transmit signals to post-
synaptic neurons via synapses by transmitter. 
There are several approaches in modeling neuronal 
activities. Conductance-based models that focus on the 
current through the cell membrane such as the Hodgkin-
Huxley model1 can reproduce those activities precisely. 
Since this type of models are composed of complex 
differential equations, large-scale simulation is 
impractical. The Leaky Integrate-and-Fire (LIF) model2 
represents the spike by resetting of membrane potential. 
This method yields simple and low-dimensional system 

equations. It is very easy to simulate using this model 
but it reproduces limited aspects of neuronal behaviors. 
In the meanwhile simplified expression while 
maintaining the mechanism of the conductance-based 
models develops the qualitative modeling. One of them, 
Digital Spiking Silicon Neuron (DSSN) model3 is 
composed of two differential equations that expresses 
the spike generation process without reset of system 
variables. The Izhikevich (IZH) model4 captures only 
the spike decision process qualitatively, and represents 
the spike by reset of its system variables. It is possible 
to reproduce a variety of spike patterns. 
Neurons are classified by characteristics of the periodic 
firing in the Hodgkin’s classification5.  Associative 
memory simulation using the DSSN model built by Li 
et al.6 showed that an all-to-all connected network of 
Class II neurons has higher recall ability than that of 
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Class I neurons. Higher recall ability here means that an 
original stored pattern is recalled from an associated 
input pattern with higher error. We configured similar 
associative memory using the IZH model and evaluated 
the difference of its performance by focusing on the 
shape of the phase resetting curve (PRC)7. 

2. Neuron Model and Synapse Model 

2.1. Izhikevich Model 

The IZH model captures the mechanism of spike 
decision process based on its bifurcation structure.  
Saddle-node and Hopf bifurcations produce Class I and 
II properties, respectively. In the IZH model, this 
mechanism is described by two differential equation (1), 
and membrane potential v is reset when it exceeds 30. 

  (1) 

Here, u is a variable that represents membrane recovery 
the parameters a, b, c, and d are constants that specify 
the model’s firing property, and I represents a stimulus 
input. The phase portraits of Class I and II neuron 
modes of this model are described in Fig. 1. Class II 

neuron arise periodic firing before he intersection of the 
two lines disappear although no occur in Class I. The 
PRC is a plot of spiking phase shift in a neuron at 
periodically spiking state induced by sufficiently small 
pulse stimulus. Its horizontal axis is the phase at which 
the stimulus is applied. Fig. 2 shows the PRC of the IZH 
model. There are two types of the shape. The Type 1 is 
always positive, and Type 2 is biphasic. The PRC of the 
IZH model is Type 1 and 2 in Class I and II models, 
respectively. The PRC of Class II has a jump point 
induced by reset. Its jump is reduced by reset parameter 
d (Fig. 3).  

2.2. Synapse Model 

Synapses transmit signals to post-synaptic neurons. 
Chemical synapses release transmitter when its pre-
synaptic neuron fires. In our model, the neurotransmitter 
is in the same manner as Li et al., approximated to vary 
in a pulse form while the spike exceeds a threshold. The 
expression of synaptic output  is shown in Eq. (2)8.  

 
Fig. 2.  Phase resetting curve of Izhikevich model in (a) Class I 

and (b) Class II modes. 

 

Fig. 1.  The phase plane of Izhikevich model in (a) Class I and 
(b) Class II modes. 

 

Fig. 4.  Time course example of membrane potential, 
transmitter concentration, and synaptic output. 

 
Fig. 3. Change of the shape of the phase resetting curve 

depending on the resetting parameter d. 

- 112 -



 Associative Memory with IZH-model 
 

© The 2015 International Conference on Artificial Life and Robotics (ICAROB 2015), Jan. 10-12, Oita, Japan  
 

  (2) 

Here,  and  are constants that represent the time 
constant of rising and phase of synaptic outputs, 
respectively. The amount of transmitter [T] is set to 1 
when v > 0, and 0 when v < 0. Figure 4 represents 
example of time variation of the membrane potential, 
neurotransmitter concentration, and the synaptic current. 

3. Simulation 

We examined the performance of the associative 
memory composed of Class II Izhikevich model varying 
resseting parameter d. The associative memory is 
composed of all-to-all connected networks and outputs a 
stored pattern similar to the input data. In this work, p 
patterns of N dots which are orthogonal to each other 
are stored (p = 4, N = 256). The patterns are listed in Fig. 
5. The weight  of the synapses from i-th to j-th 
neuron is calculated by Eq. (3).   

  (3) 

Input patterns are generated by applying random errors 
to a stored pattern (Fig. 6). We made 100 input patterns 
for every error rate. The error level vary from 5 to 50% 
with basically 5% steps and 1% in a region where the 
recall rate starts to decrease rapidly.  
Firstly, we apply a pulse stimulus only to the neurons 
corresponding black dot. Then, stimulus current to all 
neurons was set to the value that induce periodic firing. 

Figure 7(a) is an example of time series data of 256 
neuron’s membrane potential when the upper left 
pattern was input. Figure 7(b) shows the raster plot of 
this example. In this figure, we can see that at early 
phase of the recall process the neurons fire relatively in 
an asynchronous manner. The synchronicity increases 
as the neurons continue firing. And finally the neurons 
that correspond to black (white) dots fire synchronously. 
These two synchronously firing neuron groups are 
antiphasic. To assess this quantitatively, we used 
overlap  that calculates the matching degree of u-
th stored pattern from the phase in the period of each 
neuron at a time t (Eq. (4)). 

  (4) 

 
Fig. 8.  Time course of the overlap  that corresponds to 

Fig. 7(a). 

 
Fig. 6.  Examples of input patterns, generated by applying 

errors to the stored pattern 1. 

 
Fig. 7.  (a) Waveform example of membrane potential and (b) 

its raster plot. Input pattern is the upper left in Fig. 6. Blue and 

red waveforms and squares correspond to the black and white 

dots of the stored pattern 1 in Fig. 5. 

 
Fig. 5.  Stored patterns in our associative memory simulation. 
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Here,  is the time that k-th spike is generated.  = 1 
indicates that the u-th pattern is recalled successfully. 
The time course of  calculated by applying Eq. (4) 
to the data in Fig.7 is shown in Fig. 8. This result 
indicates that the stored pattern 1 is recalled correctly. 
We performed simulation for 100 input patterns for each 
error level. The reset parameter d of each neuron was 
varied from 0 to 200 by 20 in this simulation. Figure 9 
shows the overlap average  for each error level.  
Since that the change of  is relatively large when 
input error level is 30-45%, we varied the error level by 
1% step. We define that the recall is correct when  > 
0.95 for all trials. Figure 10 plots the maximum input 
error rate from which our network recalled the correct 
pattern. As shown in Fig. 10, it got almost saturated in 
the vicinity of d = 120. Compared with the shape of 

PRC shown in Fig. 3, the balance between the regions 
of positive and negative value of the phase shift may be 
important for the performance of associative memory. 

4. Conclusion 

We have configured the associative memory consisting 
of 256 neurons of the IZH model. The performance of 
Class II network was worse than Class I, but the 
performance of the associative memory is improved by 
increasing the reset parameter d, by which the shape of 
the PRC changes. In the future, the validation by a 
phase model representing the shape of the quantitative 
PRC will be performed to quantitatively evaluate how 
the shape of the PRC contributes to the performance of 
the associative memory. 
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Fig. 9.  Overlap average  of each error level. (a) From 5% 

to 50% by 5%. (b) From 30% to 45% by 1%. 

 
Fig. 10. Maximum input error level with which the recall is 

correct (  > 0.95 for all trial). 
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