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Abstract 

This research proposes a decision support system of database cluster optimization using genetic network 
programming (GNP) with on-line rule based clustering. GNP optimizes cluster quality by reanalyzing weak points 
of each cluster and maintaining rules stored in each cluster. The maintenance of rules includes : 1) adding new 
relevant rules, 2) moving rules between clusters and 3) removing irrelevant rules. The simulation focuses on 
optimizing cluster quality response against several unbalanced data growth to the data-set that is working with 
storage rules. The simulation results of the proposed method shows better results compared to GNP rule based 
clustering without on-line optimization. 
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1. Introduction 

Nowadays many large scale database systems with very 
high data growth are being utilized to improve the 
global human activity, such as communication, social 
networking, transaction, banking, etc. A distributed 
database management system becomes a solution to 
improve data access speed by organizing data in 
multiple storages for multiple types of user accesses. 
Problems of distributed database management system 
are not only how to manage the number of data, but also 
how to organize data patterns in distributed storages. 
Clever data organization is one of the best ways to 
improve the retrieval speed and reduce the number of 
disk I/Os and thereby reduce the query response time. 

In this paper, we propose a decision support system 
for database cluster optimization using Genetic Network 
Programming (GNP) with on-line rule based clustering. 
Main purpose of this research is to provide an on-line 

algorithm to maintain the cluster adaptability against 
several unbalanced data growth. For example, the 
unbalanced data growth occurs when different kinds of 
items (data) comparing to the items stored in the current 
database begin to be stored as the time goes on (the 
trend of data is changed). 

2. Review of the Proposed Framework 

2.1. Rule Based Clustering 

Rule based clustering is one of the solutions to provide 
automatic database clustering and interpretation of data 
storage patterns. Rule based clustering represents data 
patterns as rules by analyzing database structures on 
both of attributes and records3,4.   
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evaluated by the following two points. 1) The number of 
data in the database is changing as the time goes on. The 
initial number of data is 1000, then every time step, 
1000 new data are added to the database. After the 
number of data reaches 6000, 1000 data are decreased 
every time step.  2) The rule updating frequency, where 
the rule updating is executed when a predefined number 
of new data are given to the data-set (this predefined 
number is defined as "rule updating frequency"). For 
example, if the rule updating frequency is 1000, the rule 
updating will be processed every increments or 
decrements of 1000 data. The comparisons of the 
simulation results are carried out between four methods, 
i.e., the proposed method with rule updating frequency 
of 1000, 2000 and 4000, and the clustering method of 
standard GNP without online rule updating.  

 The silhouette values obtained by the four methods 
are shown in Table 3, and Fig. 3. Star marks (*) on the 
side of silhouette values show the times when the rule 
updating is carried out.  The rule updating frequency of 
4000 shows only a slight difference from no rule 
updating but shows increment of silhouette values in 
step 5 and 9, which means that the rule updating is 
effectively carried out.. The best results are obtained by 
the rule updating frequency of 1000, where silhouette 
values are stable with relatively high level compared to 
other frequency parameters. Rule updating frequency of 
2000 also shows decrements on step 3, which previous 
silhouette value are high enough.  

5. Conclusions 

This paper proposed a new rule updating mechanism for 
distributed database with unbalanced data growth. The 
simulation results of the proposed method showed the 
better clustering results comparing to GNP rule-based 
clustering without on-line adaptation. In the future, we 

will apply fuzzy membership functions to attribute 
judgment to make rules with better clustering ability. 
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Table 3.  Simulation Result of Rule updating Frequency and Number of Data Comparison. 

Step Number of Data Increment/Decrements
Rule updating frequency 

No rule updating 1000 2000 4000 

1 1000 (Default) - 0.967 0.967 0.967 0.967 

2 2000 +1000 0.945 0.965* 0.944 0.947 

3 3000 +1000 0.902 0.923* 0.915* 0.899 

4 4000 +1000 0.892 0.935* 0.902 0.895 

5 5000 +1000 0.882 0.912* 0.909* 0.903* 

6 6000 +1000 0.812 0.902* 0.897 0.887 

7 5000 -1000 0.787 0.892* 0.901* 0.821 

8 4000 -1000 0.765 0.901* 0.888 0.797 

9 3000 -1000 0.723 0.912* 0.892* 0.815* 

10 2000 -1000 0.698 0.909* 0.879 0.802 

Average 0.832 0.938 0.923 0.8845 
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