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Abstract

In this paper, a regressor for determining a lateral external continuous force applied upon a walking biped robot is investigated and
verified by a numerical simulation. A pre-defined walking gait of a biped robot is constructed by the Tchebyshev method. And a
continuous force-action classifier is generated. It determines whether the lateral external force is a continuous force or not. A regressor
which estimates a lateral external continuous force acted upon a walking biped robot is constructed by SVR (Support Vector
Regressor). The regressor is verified by a numerical simulation. We assumed that only lateral force is applied upon the COG (Center

of Gravity) of the walking biped robot.
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1. Introduction

The biped robot (humanoid robot) is the robot which
resembles human beings. Not only resembles the
but
Compared with other function-specific robots, the

appearance, also resembles its functionality.
humanoid robot is versatile in its functionality. In
theorem, it can do almost all the works which humans
do. That's why many robot researchers are enthusiastic
for making and researching a perfect humanoid robot.
The most prominent ones of these humanoid robots are
Asimo[1], Petman[2] and Hubo[3]. Other state-of-the-
art humanoid robots are found in DARPA (Defense
Advanced Research Projects Agency) robotics challenge
2013[4].

human being. For example, it may serve a human being

The humanoid robot may interact with a

by going and taking a cup of coffee to a human being.
And it can sweep the house in which the human and
humanoid live together. During interacting with a

human being, the robot can accidently collide with an
object or a human beings. The worse consequence is
falling down and gets damage. Many researches are
performed to alleviate and avoid this kind of humanoid
damages. Fujiwara et.al.[5] made a falling motion
control to minimize the falling damage. Morisawa
et.al.[6] prevented the collision of a humanoid robot
with other objects by incorporating an emergency stop
motion planning. Renner and Behnke[7] make use of
attitude sensors and reflexes to detect instability and
avoid falling down for a humanoid robot. O. Hohn
et.al.[8] made a classifier for biped instability. Kim
et.al.[9]
classifier for a biped robot by using SVM(Support

made a falling detection and avoidance

Vector Machine). All the above works are about
alleviating and avoiding the humanoid damages
irrespective of the amount of the external force. If the
external force is small, the biped robot can recover from

the instability by its inertial. And if the external force is
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intermediate and large, KNOWLEDGE ABOUT THE
AMOUNT OF THE EXTERNAL FORCE will make
the biped robot control more specific and efficient. So,
the authors made a SVR based regressor for determining
a continuous lateral external force in a walking biped
robot. This regressor will be used to determine the
lateral continuous external force and control the biped
robot not to fall down by the external force. The paper is
organized as follows. Section 2 explains the pre-defined
walking gait of a biped robot. Section 3 set forth the
continuous force-action classifier which determines
whether the applied external force is continuous or not.
The SVR and SVR based continuous lateral force
estimator is explained in Section 4 and 5 and the
numerical simulation result is in Section 6. And the
conclusion is drawn in Section 7.

Contributions are to be in English. Authors are
encouraged to have their contribution checked for
grammar. American or British spelling should be used.
Abbreviations are allowed but should be spelt out in full
when first used. Integers ten and below are to be spelt
out. Italicize foreign language phrases (e.g., Latin,
French).

2. Pre-defined Walking Gait

As pointed out in the abstract, we assumed that the
lateral continuous force is applied upon the COG of the
walking biped robot. The walking gait of a biped robot
is important in making the force-estimating regressor
for it changes the lateral dynamics of the biped robot.
So, in this section, we explain the pre-defined walking
gait of a biped robot. In our previous work [10], an
energy-efficient walking gait of a biped robot is
constructed by using Tchebyshev method. We adopt the
methodology in this paper and made an energy-efficient
walking gait. The walking gait is comprised of SSP
(Single Support Phase) and DSP (Double Support
Phase). However, we only use SSP walking gait for the
regressor estimates the lateral continuous force in SSP
walking gait. Fig. 1 illustrates the SSP walking gait
made by Tchebyshev method. The SSP walking stride is
0.6m and SSP walking time is 1.3sec. The sampling rate
of the simulation is 1msec. The walking gaits in Fig. 1
are viewed sagitally.
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Fig. 1 Walking gait sequence (in sagittal view)

3. Continuous Force-Action Classifier

While the biped robot is walking in a pre-defined
walking gait, a sudden lateral external force can be
applied to the walking biped robot. The biped controller
must determine whether some force is applied or not
and furthermore if it is, it must also determine whether
the applied force is continuous or impulsive. The
continuous force-action classifier determines these. Fig.
2 represents the ZMPy graph during walking in the pre-
defined gait. The width of the sole is 0.2m, so ZMPy
spans -0.1 ~ 0.lm. The ZMPy graph is a smooth curve
within this span, which represents the walking gait is
well constructed for the biped robot not to fall down
during walking. The sampling rate is 1msec which is
previously stated and all the ZMPy points in a SSP
walking gait are 1300. The continuous force-action
classifier takes 4 points ZMPy(t-3), ZMPy(t-2),
ZMPy(t-1) and ZMPy(t) from ZMP sensors and
compares this 4 ZMP points with the pre-defined ZMPy
at the specified walking time and if all the 4 ZMPy
points differ, it returns 1 or returns 0. The returned 1
value means that the continuous lateral force is acted
upon a biped robot. Algorithm 1 in Fig. 3 represents
these working of the continuous force-action classifier.
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Fig. 2 ZMPy graph (lateral direction ZMP)

Data: Z\M P,
Result: 1 or 0
while the biped is walking in SSP do
| read
ZMPy(t—=3),ZMP,(t-2),ZMP,(t—1),ZMP,(t);
if The 4 ZM P, points not-equals the pre-defined 4
ZM P, points then
| retum 1;
else
| continue;
end
end
Algorithm 1: Continuous Force-Action Classifier

Fig. 3 Continuous force-action classifier algorithm

4. SVR (Support Vector Regression)

Because the regressor which determines the amount of
the lateral continuous force acting upon a walking biped
robot makes use of the SVR, we briefly explains what a
SVR this SVM
Machine)[11] is basically used as a classification

in section. (Support  Vector
problem, however, if it is used as a regressor, it is SVR.
The SVR incorporates the same principles as the SVM
for classification with only minor differences. In SVM,
the constraint is that the distance between the real points
and the hyperplane must be larger than €(the margin).
However in SVR, the constraint is that the distance
between the real points and the hyperplane must be
smaller than €(the margin). In fact, the SVR solution is

solving the optimization problem in Fig. 4.

Fig. 4 Support vector regression basic framework
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5. Lateral Continuous Force Estimator

If the continuous force-action classifier determines that
some continuous force is applied, the lateral continuous
force estimator is activated to estimate the amount of
the continuous force. The whole process of constructing
the lateral continuous force estimator is depicted in Fig.
5. In Fig. 5, the SSP gait of a biped robot is depicted.
There are 5 consecutive pictures that represent one SSP
gait. The walking times are 0, 400, 600, 800 and
1300msec. The biped pictures are viewed sagitally and
the inertial coordinate system is represented as X-Y-Z
coordinates in right side of the picture. We assumed that
the external continuous force is activated laterally in -Y
direction to the COG (Center Of Gravity) of the biped
robot at any SSP gait sequence.

We divided the SSP walking gait as 5 times (0, 400, 600,
800 and 1300msec) to make it easy to construct a force
estimator. At each of this 5 gait times, the lateral
continuous force estimator is constructed by utilizing
SVR with linear kernel. And if the force is activated at
the 4 time intervals (0~400, 400~600, 600~800 and
800~1300msec) the linear interpolation technique is
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adopted to decide the amount of the applied continuous
force. All this procedure is expressed in Fig. 5.
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Fig. 5 Lateral continuous force estimator framework

6. Simulation Results

In this section, the simulation results are presented. In
Fig. 6 the ZMP vs. the applied force graph at half
walking time after training is presented. The points are
acquired by the numerical simulation of the biped robot

- ZMPy VS, _Force at half wz_aiking time

ofo rce vs zmp,
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100!

80!

Force(N)

60;

40!

20

fo2 0 002 004 006 008 0.1
ZMPy(m)
Fig. 6 ZMPy vs. Force at half walking time
and the linear line represents a trained linear SVR. The
results show that the ZMP-force graph is almost linear
and the resulting trained SVR curve is also almost
linear. In Fig. 7 there are two graphs represents the
performance of the lateral continuous force estimator.
The upper graph is when the force is applied at 500msec
in the walking time and the latter graph is when the
force is applied at 700msec. The ZMPy points are 2.75,
20.22, 37.69, 55.16, 72.13 and 90.1mm at 500msec and
391, 13.46, 30.84, 48.22, 65.60 and 82.98mm at
700msec. the blue rectangular points represents the
exact applied force from the numerical simulation and

the red triangular points represents the estimated
external force. As the two graphs represents, the
estimated value is fairly well matches the exact value.
The RMS (Root Mean Square) errors at 500msec and
700msec are 0.1838N and 8.3336N. The reason of
relatively large RMS error at 700msec compared with

Fig. 6 ZMP-applied force graph at half walking time
that at 500msec is the large estimation error at ZMPy
value 0 in 700msec graph. This is the limitation of linear
SVR and other kernel-based SVR will cope with this
estimation error.

ZMPy vs. Force at 500msec
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Fig. 7 Lateral continuous force estimator performances

7. Conclusion

In this paper, the lateral continuous force estimator is
constructed and verified by numerical simulations. The
lateral continuous force estimator estimates the
externally applied lateral force when a biped is walking.
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We assumed that the external continuous force is
applied to the COG of the biped laterally. It makes use
of linear SVR and linear interpolation technique. The
numerical simulation results show that the estimator
well predict the external force. Future works are to train
the estimator with different kernel to reduce the RMS

error and to perform other regression model except SVR.
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