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Abstract 

In this paper, a regressor for determining a lateral external continuous force applied upon a walking biped robot is investigated and 
verified by a numerical simulation. A pre-defined walking gait of a biped robot is constructed by the Tchebyshev method. And a 
continuous force-action classifier is generated. It determines whether the lateral external force is a continuous force or not. A regressor 
which estimates a lateral external continuous force acted upon a walking biped robot is constructed by SVR (Support Vector 
Regressor). The regressor is verified by a numerical simulation. We assumed that only lateral force is applied upon the COG (Center 
of Gravity) of the walking biped robot. 

. 
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1. Introduction 

The biped robot (humanoid robot) is the robot which 

resembles human beings. Not only resembles the 

appearance, but also resembles its functionality. 

Compared with other function-specific robots, the 

humanoid robot is versatile in its functionality. In 

theorem, it can do almost all the works which humans 

do. That's why many robot researchers are enthusiastic 

for making and researching a perfect humanoid robot. 

The most prominent ones of these humanoid robots are 

Asimo[1], Petman[2] and Hubo[3]. Other state-of-the-

art humanoid robots are found in DARPA (Defense 

Advanced Research Projects Agency) robotics challenge 

2013[4]. The humanoid robot may interact with a 

human being. For example, it may serve a human being 

by going and taking a cup of coffee to a human being. 

And it can sweep the house in which the human and 

humanoid live together. During interacting with a 

human being, the robot can accidently collide with an 

object or a human beings. The worse consequence is 

falling down and gets damage. Many researches are 

performed to alleviate and avoid this kind of humanoid 

damages. Fujiwara et.al.[5] made a falling motion 

control to minimize the falling damage. Morisawa 

et.al.[6] prevented the collision of a humanoid robot 

with other objects by incorporating an emergency stop 

motion planning. Renner and Behnke[7] make use of 

attitude sensors and reflexes to detect instability and 

avoid falling down for a humanoid robot. O. Hohn 

et.al.[8] made a classifier for biped instability. Kim 

et.al.[9] made a falling detection and avoidance 

classifier for a biped robot by using SVM(Support 

Vector Machine). All the above works are about 

alleviating and avoiding the humanoid damages 

irrespective of the amount of the external force. If the 

external force is small, the biped robot can recover from 

the instability by its inertial. And if the external force is 
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We assumed that the external continuous force is 

applied to the COG of the biped laterally. It makes use 

of linear SVR and linear interpolation technique. The 

numerical simulation results show that the estimator 

well predict the external force. Future works are to train 

the estimator with different kernel to reduce the RMS 

error and to perform other regression model except SVR. 
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