Introduction to silicon neuron and neuronal networks

Takashi Kohno

The University of Tokyo

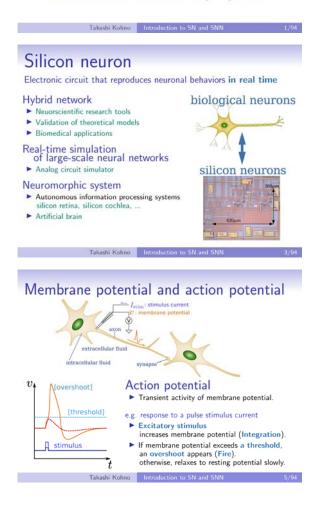
Introduction to silicon neuron and neuronal networks

Takashi Kohno¹

kohno@sat.t.u-tokyo.ac.jp http://www.sat.t.u-tokyo.ac.jp/~kohno

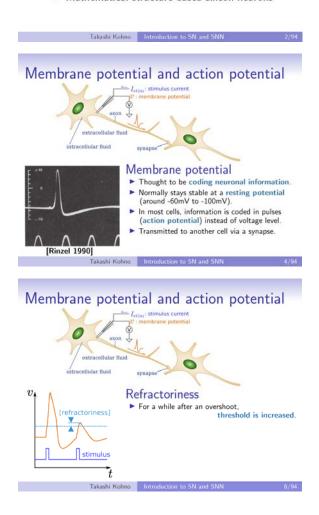
¹Institute of Industrial Science, University of Tokyo

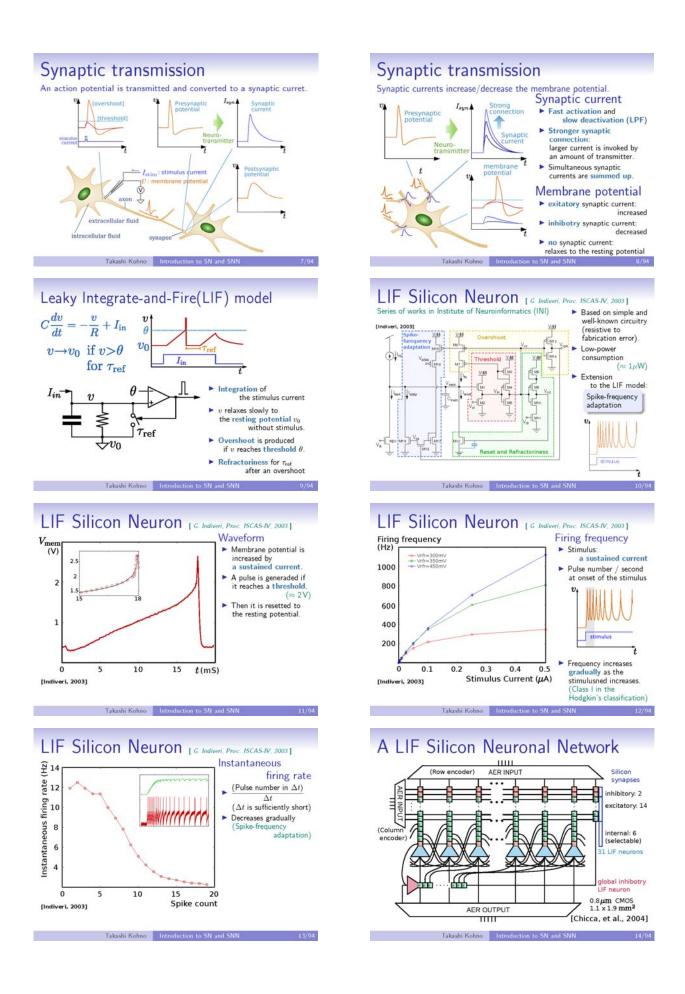
AROB 2012 Tutorial, 20/01/2012



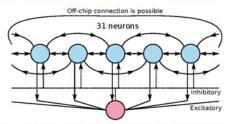
Contents

- ► What is silicon neuron ?
- Activities of neuronal cells
- ► Leaky Integrate-and-Fire silicon neuron
- ► Conductance-based silicon neurons
- ► FitzuHugh-Nagumo model and Nagumo circuit
- ► Mathematical-structure-based silicon neurons





A LIF Silicon Neuronal Network



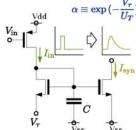
- Each neuron is connected with its first and second neighborhood by exictatory synapse
- The global inhibitory neuron
 - ► Inhibitory connection to every neuron.
 - Excitatory connection from every neuron

Current Mirror Integrator



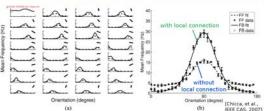
Time constant is ruled by

 $ightharpoonup I_{
m in}$ while $I_{
m in}\gg I_{
m syn}\Rightarrow {
m fast}$ ightharpoonup lpha while $I_{
m in}\ll 1\Rightarrow {
m slow}$



Increases fast, decreases slowly Similar to synaptic dynamics

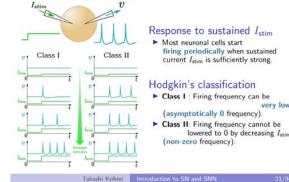
Orientation discrimination network



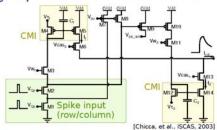
- ▶ Output is coded by firing rate of each silicon neurons.
- ► Selectivity is enhanced by local connection
- ► Neurons for similar orientation facilitate each other via the neighboorhood connection
- ▶ Neurons for different orientation are depressed via the global inhibitory

55

Periodical firing and neuron class



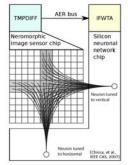
A synapse circuit in LIF SNN



- ► Two Current Mirror Integrators (CMIs) for exitatory and inhibotory
- Synaptic depression and facilitation (short-term plasticity) can be realized by the CMI of opposite polarity.

Takashi Kohno Introduction to SN :

Orientation discrimination network



TMPDIFF chip

- ► 32 × 32 pixels
- Generates spikes propotional to log of the "intensity" of a pixel.

AER bus

A off-chip bus that transmits the timing of spikes.

IFWTA chip

- ► The LIF neuronal network chip.
- Each of 31 LIF neurons receives spikes from its own "receptive field" bar of different orientation

Recent updates

Improvement of the LIF silicon neuron circuit

Extending configurability of characteristics.

Another silicon synapse circuit

Differential pair integrator (DPI): linear integrator

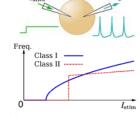
Implementation of STDP learning rule

[Arthur and Boahen, IEEE Transactions on Circuit and Systems, pp. 1034-1043, 2011] An extended LIF silicon neuron by another research group

Incorporating slow dynamics into LIF neuron model.

Takashi Kohno Intro

Periodical firing and neuron class



► Class I : Leaky integrator Class II: Frequency resonator Response to sustained I_{stim}

Most neuronal cells start firing periodically when sustained current I_{stim} is sufficiently strong.

Hodgkin's classification

► Class I : Firing frequency can be

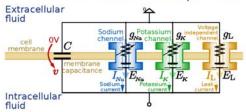
(asymptotically 0 frequency).

➤ Class II: Firing frequency cannot be lowered to 0 by decreasing I_{stim} (non-zero frequency).

© ISAROB 2012

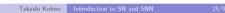
Rhythmic bursting Burst firing is a source of rhythmic patterns in the nerve system. * ENLINEARILLIA 3 → * C. Elliptic bursting

lonic mechanism of membrane potential



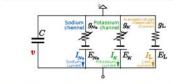
equivalent circuit

- ► Membrane capacitance C is charged or discharged by ionic currents.
- ► lonic current is controlled by voltage source and variable resister.
- ► Voltage source corresponds to the power produced by concentration potential.
- ► Variable resister corresponds to ionic permeability of an ionic channel



Hodgkin-Huxley model [A Hodgkin and A Huxley, 1952]

The world's first model for ionic conductance in a nerve membrane



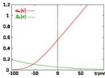
$$\begin{split} C\frac{dv}{dt} &= \bar{g}_{Na}m^3h(E_{Na}-v) + \bar{g}_{K}n^4(E_{K}-v) + \bar{g}_{L}(E_{L}-v),\\ \frac{dm}{dt} &= \alpha_m - (\alpha_m + \beta_m)m,\\ \frac{dh}{dt} &= \alpha_h - (\alpha_h + \beta_h)h,\\ \frac{dn}{dt} &= \alpha_h - (\alpha_h + \beta_h)h,\\ \frac{dn}{dt} &= \alpha_n - (\alpha_n + \beta_n)n. \end{split}$$

$$\begin{bmatrix} E_{Na}: \text{ Equilibrium potential of Na}^+ (\approx 50 \text{ mV})\\ E_{L}: \text{ Averaged value of the equilibrium potential of K}^+ (\approx -77 \text{ mV})\\ E_{L}: \text{ Averaged value of the equilibrium potential of Na}^+ (\approx 50 \text{ mV})\\ E_{L}: \text{ Averaged value of the equilibrium potential of Na}^+ (\approx -77 \text{ mV})\\ E_{L}: \text{ Averaged value of the equilibrium potential of Na}^+ (\approx -77 \text{ mV})\\ E_{L}: \text{ Averaged value of the equilibrium potential of Na}^+ (\approx -77 \text{ mV})\\ E_{L}: \text{ Averaged value of the equilibrium potential of Na}^+ (\approx -77 \text{ mV})\\ E_{L}: \text{ Averaged value of the equilibrium potential of Na}^+ (\approx -77 \text{ mV})\\ E_{L}: \text{ Averaged value of the equilibrium potential of Na}^+ (\approx -77 \text{ mV})\\ E_{L}: \text{ Averaged value of the equilibrium potential of Na}^+ (\approx -77 \text{ mV})\\ E_{L}: \text{ Averaged value of the equilibrium potential of Na}^+ (\approx -77 \text{ mV})\\ E_{L}: \text{ Averaged value of the equilibrium potential of Na}^+ (\approx -77 \text{ mV})\\ E_{L}: \text{ Averaged value of the equilibrium potential of Na}^+ (\approx -77 \text{ mV})\\ E_{L}: \text{ Averaged value of the equilibrium potential of Na}^+ (\approx -77 \text{ mV})\\ E_{L}: \text{ Averaged value of the equilibrium potential of Na}^+ (\approx -77 \text{ mV})\\ E_{L}: \text{ Averaged value of the equilibrium potential of Na}^+ (\approx -77 \text{ mV})\\ E_{L}: \text{ Averaged value of the equilibrium potential of Na}^+ (\approx -77 \text{ mV})\\ E_{L}: \text{ Averaged value of the equilibrium potential of Na}^+ (\approx -77 \text{ mV})\\ E_{L}: \text{ Averaged value of the equilibrium potential of Na}^+ (\approx -77 \text{ mV})\\ E_{L}: \text{ Averaged value of the equilibrium potential of Na}^+ (\approx -77 \text{ mV})\\ E_{L}: \text{ Averaged value of the equilibrium potential of Na}^+ (\approx -77 \text{ mV})\\ E_{L}: \text{ Averaged value of the equilibrium potential of Na}^+ (\approx -77 \text{ mV})\\ E_{L}: \text{ Averaged value of the equilibrium potential of Na}^+ (\approx -77 \text{ mV})\\ E_{L}: \text{ Averaged value$$

Hodgkin-Huxley model [A Hodgkin and A Huxley: 1952]

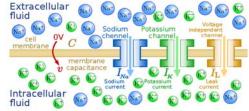
The world's first model for ionic conductance in a nerve membrane State variables for the K⁺ channel

$$\begin{split} \frac{dn}{dt} &= \alpha_n - (\alpha_n + \beta_n) n \\ \alpha_n &= \frac{0.01(v + 55)}{1 - exp(-(v + 55)/10)} \\ \beta_n &= 0.125 exp(-\frac{v + 65}{80}) \end{split}$$



Takashi Kohno Introduction to SN and S

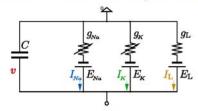
Ionic mechanism of membrane potential



- membrane capacitance: cell membrane is an insulator
- Ionic concentration is different between intracellular and extracellular fluids.
- Ionic channels passively transmit specific ionic particles. ⇒ ionic current (e.g. sodium current, ...)
- Membrane capacitance is charged or discharged by ionic currents. ⇒ membrane potential

Takashi Kohno Introduction to SN and SNN

lonic mechanism of membrane potential



lonic concentration is maintained by biological mechanisms $(E_x$ is constant) Membrane potential is decided by conductance g_j of variable resisters.

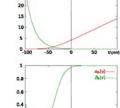
Some of g_j s change dynamically depending on the membrane potential (voltage-dependent channels) \Rightarrow dynamical behavior of membrane potential

Takashi Kohno Introduction to SN and SNN

Hodgkin-Huxley model [A Hodgkin and A Huxley: 1952]

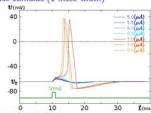
The world's first model for ionic conductance in a nerve membrane

State variable for the Na+ channel $\frac{dm}{dt} = \alpha_m - (\alpha_m + \beta_m)m$ $\frac{0.1(v+40)}{1-exp(-(v+40)/10)}$



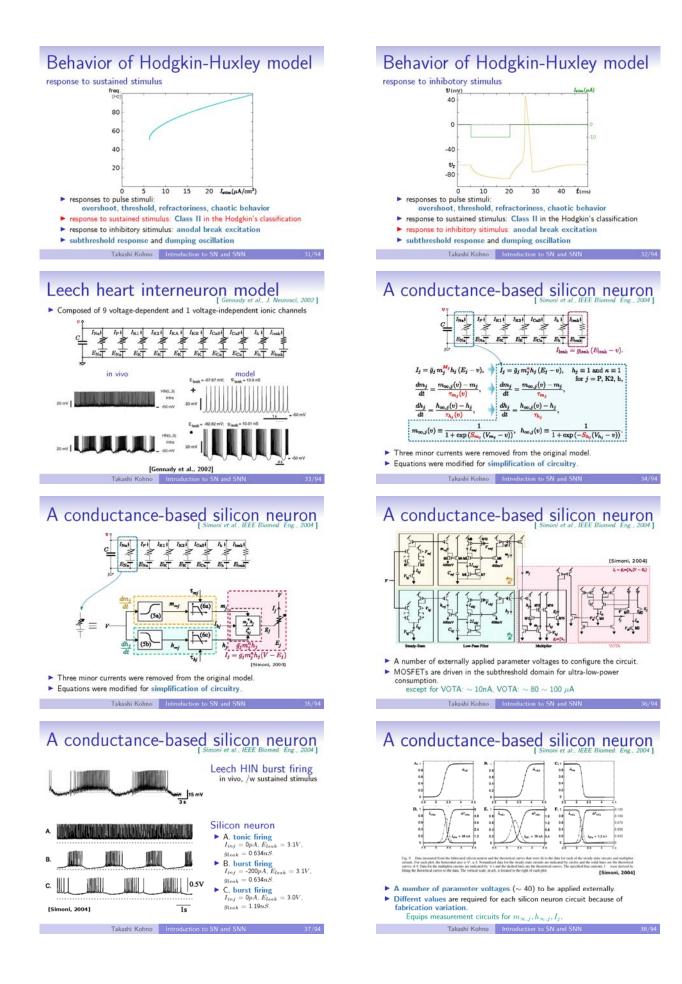
Behavior of Hodgkin-Huxley model

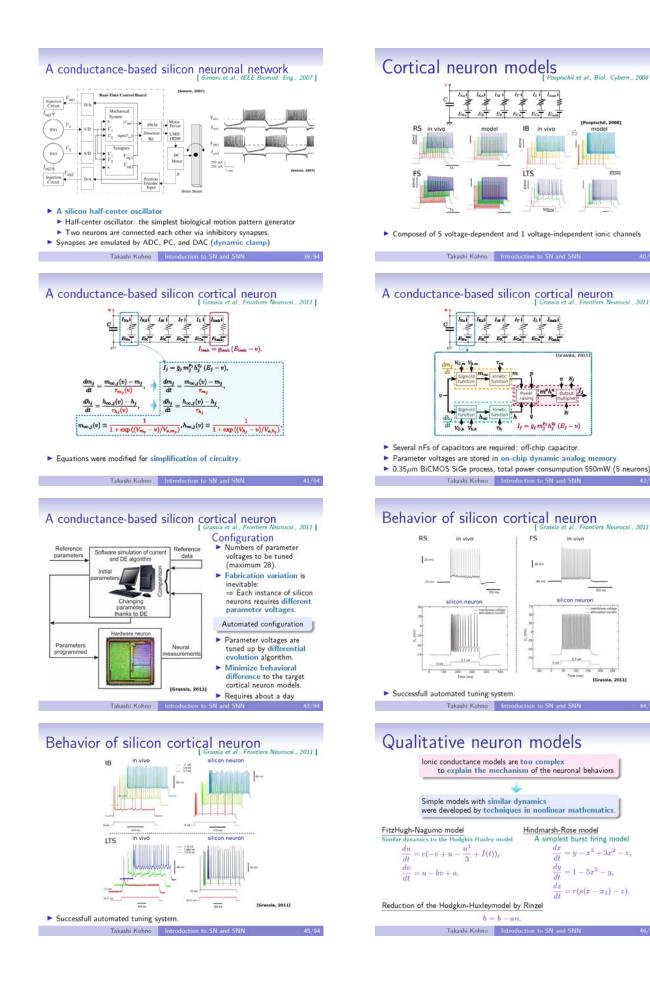
response to pulse stimulus (1 msec width)



- overshoot, threshold, refractoriness, chaotic behavior
- response to sustained stimulus: Class II in the Hodgkin's classification
- response to inhibitory sitimulus: anodal break excitation
- subthreshold response and dumping oscillation

Takashi Kohno Inte





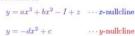
A qualitative model: H-R(1982) model

The model

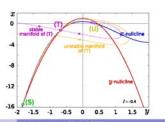
Nullclines

$$\frac{dx}{dt} = y - ax^3 + bx^2 + I - z$$

$$\frac{dy}{dt} = c - dx^2 - y$$



Phase plane sample



FitzHugh-Nagumo model

The world's first qualitativel neuron model.

IMPULSES AND PHYSIOLOGICAL STATES IN THEORETICAL MODELS OF NERVE MEMBRA

Membrane potential, Activity of ionic channels, Stimulus current,

a, b, c : Constants under conditions: $\begin{array}{l} 1 - \frac{2}{3}b < a < 1, \ 0 < b < 1, \\ b < c^2, \ c > 0 \end{array}$

- x decreases at excitation. (Sign is inverted to the H-H model) - Excitatory stimulus is z<0.

What is F-N model for ?

$$\frac{dx}{dt} = c(y + x - \frac{x^3}{3} + z),$$

$$\frac{dy}{dt} = \frac{-(x - a + by)}{c}.$$

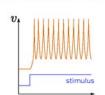
x: Membrane potential,
 y: Activity of ionic channels,
 z: Stimulus current.

To construct a simple model that reproduces the important behaviors in the H-H model to elucidate their mathematical structure

- Resting membrane potential
- Response to pulse stimulus

Overshoot, threshold, and refractoriness

► Periodical firing



Phase plane of F-N model (1)

Nullcline:

A set of state point (x, y)where the temporal differentiation of a variable is 0

x-nullcline

$$\frac{dx}{dt} = c(y + x - \frac{x^3}{3} + z),$$

$$\Rightarrow y + x - \frac{x^3}{6} + z = 0,$$

$$\Leftrightarrow y = -x + \frac{x^3}{3} - z$$

y-nullcline

$$\frac{dy}{dt} = \frac{-(x - a + by)}{c},$$

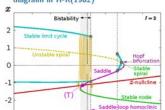
$$\Rightarrow x - a + by = 0,$$

$$\Leftrightarrow$$
 $y = \frac{-x}{x}$

A qualitative model: H-R(1984) model

H-R(1982) + a slow variable z

- ▶ Dynamics is described in the v-z plane
- ► The v-z plane corresponds to a bifurcation diagraim in H-R(1982)



 $\frac{dx}{\cdots} = y - ax^3 + bx^2 + I - z,$

$$\begin{aligned}
\frac{dy}{dt} &= c - dx^2 - y, \\
\frac{dz}{dt} &= r(s(x - x_1) - z).
\end{aligned}$$

- $s(x x_1) z = 0$ $\Leftrightarrow x = \frac{1}{s}z + x_1$ In the left figure r = 0.001, s = 4, x_1 : x coordinate of (S)
- (S) Above the z-nullcline: $\frac{dz}{dt} > 0$
- ▶ Below the z-nullcline: $\frac{dz}{dt} < 0$

Takashi Kohno Introduction to SN a

What is F-N model for ?

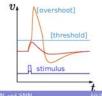
$$\begin{aligned} \frac{dx}{dt} &= c(y+x-\frac{x^3}{3}+z),\\ \frac{dy}{dt} &= \frac{-(x-a+by)}{c}. \end{aligned}$$

- x: Membrane potential,
 y: Activity of ionic channels,
 z: Stimulus current.

To construct a simple model that reproduces the important behaviors in the H-H model to elucidate their mathematical structure

- Resting membrane potential
- Response to pulse stimulus

Overshoot, threshold, and refractoriness



What is F-N model for ?

$$\frac{dx}{dt} = c(y + x - \frac{x^3}{3} + z)$$
$$\frac{dy}{dt} = \frac{-(x - a + by)}{c}.$$

x: Membrane potential,
 y: Activity of ionic channels,
 z: Stimulus current.

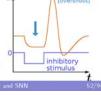
To construct a simple model that reproduces the important behaviors in the H-H model to elucidate their mathematical structure

- Resting membrane potential
- ▶ Response to pulse stimulus

Overshoot, threshold, and refractoriness

- Periodical firing
- ► Anodal break excitation

Action potential is produced after a suffi-strong inhibitory stimulus.



Takashi Kohno Introduction to S

Phase plane of F-N model (2)

Nullclines in the F-N model:

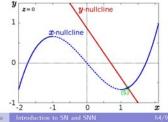
$$y=-x+rac{x^3}{3}-z$$
 ... x -nullcline ($y=rac{-x+a}{b}$... y -nullcline (

 \cdots x-nullcline $\left(\frac{dx}{dt} = c(y + x - \frac{x^3}{3} + z)\right)$ \cdots y-nullcline $\left(\frac{dy}{dt} = \frac{-(x - a + by)}{c}\right)$

Phase plane example

stimulus z = 0, a = 0.7,

b = 0.8, c = 3.0.



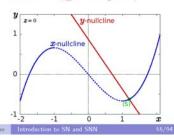
Phase plane of F-N model (2)

Nullclines in the F-N model:

$$y = -x + \frac{x^3}{3} - z \qquad \cdots x \text{-nullcline} \qquad \left(\frac{dx}{dt} = c(y + x - \frac{x^3}{3} + z)\right)$$

$$y = \frac{-x + a}{b} \qquad \cdots y \text{-nullcline} \qquad \left(\frac{dy}{dt} = \frac{-(x - a + by)}{c}\right)$$

Phase plane example (S): equilibrium

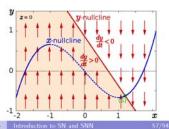


Phase plane of F-N model (2)

Nullclines in the F-N model:

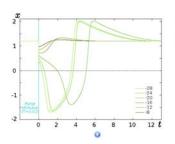
$$\begin{split} y &= -x + \frac{x^3}{3} - z & \cdots x\text{-nullcline} & \left(\frac{dx}{dt} = c(y + x - \frac{x^3}{3} + z)\right) \\ y &= \frac{-x + a}{b} & \cdots y\text{-nullcline} & \left(\frac{dy}{dt} = \frac{-(x - a + by)}{c}\right) \end{split}$$

Phase plane example The y-nullcline: On the left side, $\frac{dy}{dt} > 0$ On the right side, $\frac{dy}{dt} < 0$



Action potentials in F-N model (1)

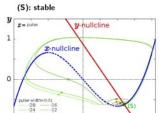
Response to singlet pulse: (T = 0.01)



at depolarization

Action potentials in F-N model (1)

Response to singlet pulse: (T = 0.01)



Pulse stimulus kicks the state point leftward

If stimulus is small: stays above the x-nullcline $\Rightarrow \frac{dx}{dt} > 0 \Rightarrow \text{ rightward to (S)}.$

If stimulus is large:

- in Still Guts 1 and gets where $\frac{1}{2}$ color $\frac{1}{2}$ colo
- $\Rightarrow \frac{dx}{dt} > 0$ (lower-leftward) \Rightarrow goes back to (S): overshoot

Threshold: the middle part of the x-nullcline

Phase plane of F-N model (2)

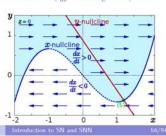
Nullclines in the F-N model:

$$y = -x + \frac{x^3}{3} - z \qquad \cdots x \text{-nullcline} \qquad \left(\frac{dx}{dt} = c(y + x - \frac{x^3}{3} + z)\right)$$

$$y = \frac{-x + a}{b} \qquad \cdots y \text{-nullcline} \qquad \left(\frac{dy}{dt} = \frac{-(x - a + by)}{c}\right)$$

Phase plane example

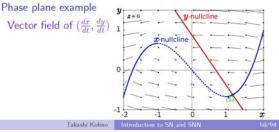
The x-nullcline: Above it, $\frac{dx}{dt} > 0$ Below it, $\frac{dx}{dt} < 0$



Phase plane of F-N model (2)

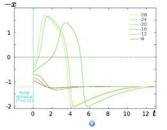
Nullclines in the F-N model:

$$\begin{array}{ll} y = -x + \frac{x^3}{3} - z & \cdots x \text{-nullcline} & \left(\frac{dx}{dt} = c(y + x - \frac{x^3}{3} + z)\right) \\ y = \frac{-x + a}{b} & \cdots y \text{-nullcline} & \left(\frac{dy}{dt} = \frac{-(x - a + by)}{c}\right) \end{array}$$



Action potentials in F-N model (1)

Response to singlet pulse: (T = 0.01)

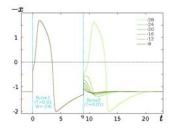


at depolarization

 $\begin{array}{c} {\sf Pulse\ response} \\ {\sf Time\ width:}\ T=0.01 \\ {\sf Amplitude:}\ -8\ ..\ -28 \end{array}$ Threshold is between x = -0.7 and -0.6

Action potentials in F-N model (2)

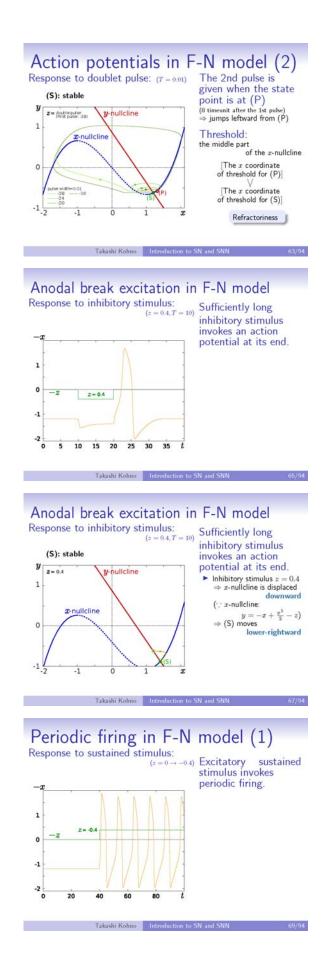
Response to doublet pulse: (T = 0.01)

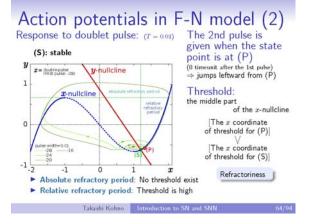


 $\begin{array}{l} \text{Pulse stimulus} \\ \text{Time width: } T=0.01 \\ \text{Interval: 8} \\ \text{Amplitude: 1st} = 24 \\ \text{2nd} -8 \dots -28 \end{array}$

Threshold

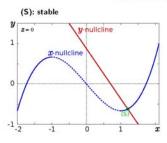
 $\begin{array}{c} \text{for 1st pulse} \\ \text{between } x = -0.7 \text{ and } -0.6 \end{array}$ for 2nd pulse between x = -0.6 and -0.5 \Rightarrow Threshold is increased Refractoriness |





Anodal break excitation in F-N model

Response to inhibitory stimulus:



Sufficiently long inhibitory stimulus invokes an action potential at its end.

Inhibitory stimulus z = 0.4 $\Rightarrow x$ -nullcline is displaced

(:: x-nullcline: $y = -x + \frac{x^9}{3} - z$) \Rightarrow (S) moves lower-rightward

Anodal break excitation in F-N model

Response to inhibitory stimulus:

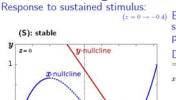
(S): stable v-nullcline x-nullclin

Sufficiently long inhibitory stimulus invokes an action potential at its end.

- Inhibitory stimulus z = 0.4 $\Rightarrow x$ -nullcline is displaced
 - (: x-nullcline:
 - $y = -x + \frac{x^3}{3} z)$ \Rightarrow (S) moves lower-rightward
- Stimulus ends z = 0z=0 \Rightarrow The system state is below the x-nullcline, where $\frac{dx}{dt} < 0$ \Rightarrow it moves leftward and action potential starts.

Takashi Kohno Introduction

Periodic firing in F-N model (1)

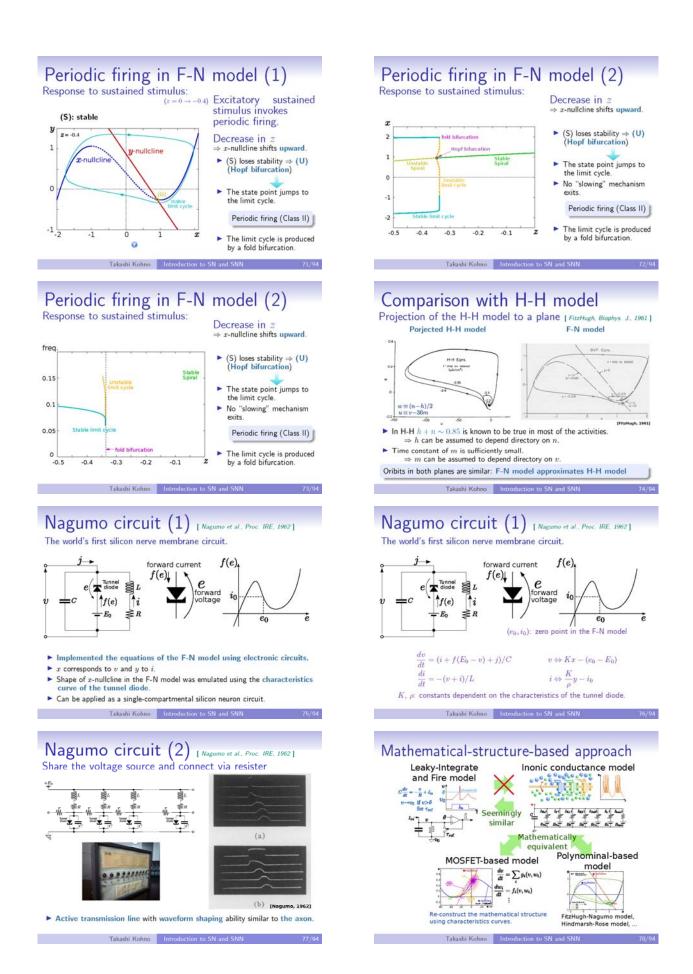


Excitatory sustained stimulus invokes periodic firing.

Decrease in z $\Rightarrow x$ -nullcline shifts upward x-nullcline: $y = -x + \frac{x^3}{3} - z$

61

Takashi Kohno Introduction to SN and SNN



A mathematical-structure-based burst SN

The model:

- ► Qualitatively equivalent to the Hindmarsh-Rose (1984) model constructed by combination of "device-native" curves
- ► Three-variable

the minimum number of variables required for burst firing two fast and one slow ones.

Produces a class of burst firing pattern: Square-wave bursting

Constructed on CMOS technology:

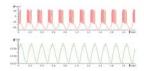
- ► MOSFETs are under subthreshold condition.
- ► Simple and easy-to-use circuit components ⇔ "device-native" curve
- ▶ differential pair circuitry (with or without current mirror load)
 ▶ log-domain current-mode integrator circuitry

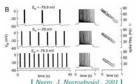
Takashi Kohno Introduction to SN and S

Dynamical structure

timeseries of v and q

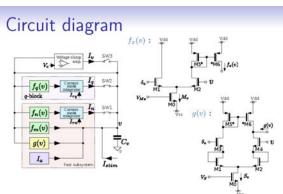
biological square-wave burster





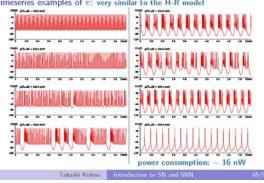
In the 3-variable system, bursting is produced.

- $ightharpoonup rac{dq}{dt} < 0$ while the system state is below the q-nullcline
- $\frac{dq}{dt} > 0$ while the system state is above the q-nullcline.



Takashi Kohno Introduction to SN :

HSpice simulation results



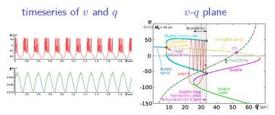
System equations

$$\begin{split} C_v \frac{dv}{dt} &= -g(v) + f_m(v) - n - q + I_a + I_{\text{stim}}, \\ \frac{dn}{dt} &= \frac{f_n(v) - n}{T_n}, \ \frac{dq}{dt} = \frac{f_q(v) - q}{T_q}. \end{split}$$

Combination of given components' characteristics curves, which re-constructs the bifurcation structure in the H-R model.

Here, the given components are differential pairs: $f_x(v) \ {\rm and} \ g(v) \ {\rm represent} \ {\rm their} \ {\rm characteristics} \ {\rm curves}$

Dynamical structure

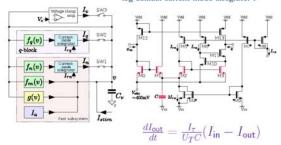


In the 3-variable system, bursting is produced.

- $lackbox{ } rac{dq}{dt} < 0$ while the system state is below the q-nullcline
- $\frac{dq}{dt} > 0$ while the system state is above the q-nullcline.

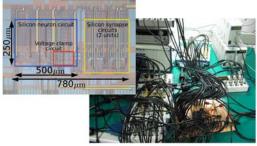
Circuit diagram

log-domain current-mode integrator:



.SI implementation and experiment

TSMC .35µm CMOS process



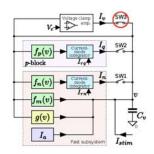
Takashi Kohno Introduction to

VLSI implementation and experiment

TSMC .35µm CMOS process

Setting up the parameter voltages

Configuring the circuit's dynamics



- applied parame voltages (~20)
- Fabrication variation is inevitable.

Nullcline mode

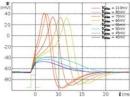
- ► The integrated voltage-clamp circuit is activated to draw the nullclines.
- The parameter voltages are decided based on the nullclines in each silicon neuron unit

Affect of fabrication varia tion can be compensated.

Takashi Kohno Introduction to SN and

Experimental result (Class I setting)

Response to pulse stimulus



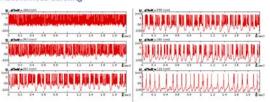
- ► Class I : Only the fast subsystem is activated.
- ► Threshold is at near -45mV
- Refractoriness

The latter response is smaller than the former (see V_{stim} = 90 mV)

Takashi Kohno Introduction to SN and SNN

Experimental result (square-wave burster setting)

Autonomous bursting

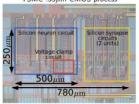


- ▶ Not completely different from the HSpice simulation results
- Bursting patters are fluctuated severely by noise
- Noise effect is ciritical in this mode.

Several modeling techniques to reduce the noise effect were developed.

VLSI implementation and experiment

TSMC .35µm CMOS process



Nullcline mode

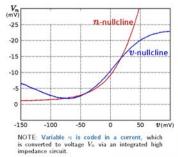
Voltage clamp circuit draws the nullclines

- ► Several techniques to estimate the dynamical structure in the circuit were develped.
 [Kohno and Aihara, NOLTA, 2010]

Takashi Kohno Introduction to SN

Setting up the parameter voltages

Configuring the circuit's dynamics



- applied parame voltages (~20)
- Fabrication variation is inevitable.

Nullcline mode

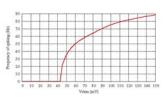
- ► The integrated voltage-clamp circuit is activated to draw the nullclines.
- The parameter voltages are decided based on the nullclines in each silicon neuron unit

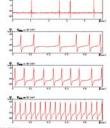
Affect of fabrication variation can be compensated.

Takashi Kohno Introduction to

Experimental result (Class I setting)

Response to pulse stimulus

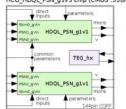


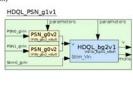


- ► The firing frequency can be decreased to near zero. (Class I in the Hodgkin's Classification)
- ► Fluctuation in the spontantaneous frequency gets smaller as the stimulus

atest silicon neuronal network chip

HCO_HDQL_PSN_g1v3 chip (CMOS .35um)





- A silicon neuron block: a silicon neuron and two silicon synapse circuits.
- ► A silicon synapse circuit: similar dynamics to the GABA_A or AMPA synapses Experimental results will be appear soon

© ISAROB 2012 64