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Abstract: Target enclosure by autonomous robots is useful for many practical applications, for example, surveillance of disaster
sites. Scalability is important for autonomous robots because a larger group is more robust against breakdown, accidents, and
failure. However, it is more difficult to operate a larger group of robots because their individual capacity for recognizing team-
mates should be higher. In this paper, to achieve a highly scalable target enclosure model, we demonstrate a new condition
for Takayama’s enclosure model. The original model requires a static relationship between agents. However, robots can form
an enclosure even under a dynamic topology on the basis of a nearest neighbor graph; hence, they do not require recognition
capability. We confirm this by an analytical discussion of switched systems and a series of computer simulations.
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1 INTRODUCTION
In this paper, we propose a new condition for Takayama’s

target enclosure model [10] that can allocate robots to an un-
specified number of targets.

Target enclosure, which is useful for monitoring disaster
sites and unknown vehicles, has recently become an impor-
tant goal for multiple robots. Robots can operate in danger-
ous circumstances, replacing human presence.

Disaster sites are usually far from an operator. In this case,
a group of robots examines the exact number of sites to be ob-
served and their locations. Therefore, it is desirable that more
robots than necessary are employed, which enables them to
accept a larger number of targets . For this purpose, the tasks
of target allocation and target enclosure must be performed
simultaneously.

However, it seems difficult for most target enclosure mod-
els proposed so far to realize this requirement.

Several related studies deal with target
enclosure[12][5][4][10]. Except for the study of Kobayashi
et al.[5], all other studies require that a particular physical
arrangement of the robots be maintained in order to build
a target enclosure. For example, Yamaguchi[12] discussed
a target capturing task in which the robots must maintain a
chain structure. Kim et al.[4] discussed the target enclosure
problem; in their solution, each robot needs information on
the relative speed of one robot and relative geographical
relation to its target to determine its behavior. If the relation-
ship between a robot and its reference robot is considered as
a link in graph theory, the graph of the group of robots must
follow a Hamiltonian cycle.

When a robot changes the target to be enclosed, the fol-
lowing two events should be considered: withdrawal and
accedence of the robot. In the former, the remaining robots
in the group must maintain the constraint of the Hamiltonian

Fig. 1. Process of target enclosure using five robots.

cycle without the removed robot. In the latter, a group that
satisfies the Hamiltonian cycle condition and the new mem-
ber must form a new Hamiltonian cycle. As far as we know,
discussion of these events is inadequate when there are no
restrictions on the timing of withdrawal and accedence of
robots.

Therefore, we investigated the relaxation of the condition
of maintaining a Hamiltonian cycle to achieve target enclo-
sure. In particular, we focused on the study of Takayama et
al.[10]. In their model, each robot needs information of one
neighbor and its target. As in other studies, this model also
requires the Hamiltonian cycle constraint. However, in this
paper, we show that this model can realize target enclosure
without this constraint when each robot bases its behavior on
information from its nearest neighboring robot. Therefore, in
this model, robots can change targets without considering the
above two events.

Note that the reference relationships among more than
four robots in the proposed nearest neighbor model are often
unconnected in the graph theory sense. Therefore, it is not
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Fig. 2. Model of Takyama’s target enclosure: α, β.

easy to discuss this issue using a graph Laplacian, which is
the primary analytical approach used for multirobot systems.
In this paper, the theory of switched systems[7] is adopted
for analyzing groups of less than five robots. A series of
computer simulations is used for larger groups.

This paper is organized as follows. First, Takayama’s
model is introduced. Next the proposed method based on us-
ing the nearest neighbor as a reference is presented, and the
problems in verifying its ability to form a target enclosure are
discussed. In section 4, the practical asymptotic stability of a
small group is proven analytically. In addition, we use com-
puter simulations to demonstrate the ability of a larger group
to achieve target enclosure.

2 TAKAYAMA’S TARGET ENCLOSURE

MODEL
Firstly, Takayama’s target enclosure model is explained．

2.1 Takayama’s target enclosure model
In this section, we assume that all robots choose the same

target. We assume that on a two-dimensional (2D) plane,
there is only one target O at the origin and n robots. Fig.1
illustrates the case of n = 5. Robots are numbered counter-
clockwise as P1, . . . , Pn, and ri is the position vector of the
robot Pi. In the target enclosure task, each robot moves to
the corresponding white marker.

To achieve this task, Takayama et al.[10] proposed the fol-
lowing model. Each robot determines its control input, speed
vi, and angular velocity ωi using two aspects of angular in-
formation: relative angles with respect to the target and an
anterior neighboring robot,denoted as αi and βi, respectively.
As a result, rotational movement occurs with a central focus
on the target.

vi = fβi (1)

ωi = vi/r̄ − k cos αi, (2)

Fig. 3. Patterns of reference relationships among robots in a
three-robot group.

Fig. 4. Unconnected pattern of reference relationships in a
four-robot group.

where the parameters r̄, k, and f > 0 specified beforehand.
Pi+1 is the robot to which Pi refers, and r̄ is the expected
distance to the target. In Takayama’s model, the i-th robot
refers to the i + 1-th robot, and the n-th robot refers to the
first robot P1. That is, if the relationship between a robot and
its reference robot is considered as a link in graph theory, the
graph of the group of robots must be a Hamiltonian cycle.
The authors proved the convergence to the goal state of the
target enclosure under this constraint.

Takayama et al. reported the following three characteris-
tics of their model. (E1) The distance between the target and
each robot converges to r̄. (E2) The speed vector Vi and the
vector (O − Pi) are orthogonal. (E3) The gaps between a
robot and its neighbors are equalized, i.e., �i = 2π

n .
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3 NEW REFERENCE RULE PROPOSAL OF

TAKAYAMA’S MODEL

3.1 Takayama’s model considering the nearest neigh-

boring robot as the reference

In this paper, the robots observed by the i-th robot are con-
sidered to be its reference robots. In the original Takayama’s
model, the i-th robot Pi’s reference robot is the i+1-th robot
Pi+1. This relationship forms a Hamiltonian cycle. As men-
tioned above, this constraint makes target allocation behavior
difficult. It also causes the scalability problem. Furthermore,
each robot must identify its reference robot from the group
of robots. This typically becomes difficult as the group size
increases.

Therefore, we examine a new reference robot scheme in
which each robot considers its anterior neighboring robot as
its reference robot. Each robot controls itself as described
in equations 1 and 2, but it chooses its nearest neighbor as
its reference robot. If possible, the robots can change their
target during the target allocation task. Such a system also
has higher scalability because individual robots need not be
identified to observe the nearest robot.

3.2 Problems in verification of the proposed reference

model

In the work of Takayama et al.[10], the model was proven
analytically by two approaches: convergence of the distance
from the target and convergence of the distance between
robots. The former convergence holds true for our proposed
model.

In contrast, the result of the latter approach in which the
angle between each adjacent robot converges to 2�/n does
not apply in our proposed model because Takayama’s proof
assumes that the relationship between the robot and its ref-
erence robot is static and robots are connected in the graph
theory sense, as in references [8], [8], [9], and [10]. However,
this assumption is inadequate for the following reasons.

1. The reference relationship in the proposed model
changes dynamically. For example, there are six graph-
ical patterns for the three-robot group (see Fig.3.).

2. The graph is not connected when n > 3. If n ≤ 3, the
graph is dynamic but connected (at least, it is weakly
connected as a digraph). However, when n > 3, uncon-
nected patterns appear, as shown in Fig.4.

Because of these two differences, alternative approaches of
verifying the proposed model are required.

4 VERIFICATION OF THE PROPOSED NEAR-

EST NEIGHBOR REFERENCE MODEL
In this section, switched systems theory is adopted to ver-

ify the convergence of the angle between a pair of neighbor-
ing robots in the three- and four-robot groups.

First, the target enclosure problem is defined.

4.1 Definition of enclosure task
In this paper, the target enclosure task for an n-robot

group is defined as follows. The task consists of determin-
ing the distance to the target and equalizing the gap angle.

The distance task is

Ed =
n∑

i=1

(ri − r̄)2. (3)

The angle equalization task is

Ea =
n∑

i=1

(�i −
2�

n
)2. (4)

Because of these two requirements, the robots are deployed
evenly on a circle having a radius of r̄.

4.2 Verification using switched system
The results of the switched system are used here. Instead

of the graph Laplacian, the Poincaré-Bendixson theorem[3]
can be used, but this theorem is generally applicable only to
systems with two variables. In contrast, the results of the
switched system adopted here can be used to examine the
convergence property of a small group of robots.

4.3 Switched systems
A switched system is defined as[7, 11]

ẋ = fs(x), (5)

where x ∈ Rn is a continuous state variable, and ẋ is its
derivative. Furthermore, S is a set of discrete values s, and
s is static even if t and/or x change. In this case, reference
[11] proves the sufficient condition for the practical asymp-
totic stability of the switched system. Let V (x) be a con-
tinuous differentiable positive definite function. In addition,
we assume that a set of positive values Ωρ = {x ∈ Rn :
V (x) ≤ ρ} is bounded. In this case, the switched system
exhibits practical asymptotic stability for any D ⊂ Ωρ when
the following conditions are satisfied.

a) min
s∈S

∂V

∂x
fs(x) < 0, ∀x ∈ Ωρ − {0} (6)

b) 0 ∈ Int(C), (7)
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where Int(C) is the interior of (C). C is given as

C = conv({fs(0) : s ∈ S})
= {
∑
s∈S

λsfs(0) : λs ≥ 0,
∑
s∈S

λs = 1}. (8)

We assume that a sufficient time has passed so that all
the robots are near their common target. Furthermore, we
assume that the distance between the robots and the target is
r̄, and each robot determines its nearest neighbor using only
the angle with respect to its neighbor. In this case, the angle
�i between the i-th robot and its reference robot is expressed
as follows.

Case 1: �i+1 ≥ �i, �i ≥ �i�1

d�i

dt
=

b

2
(−�i + �i�1) (9)

Case 2: �i+1 < �i, �i ≥ �i�1

d�i

dt
=

b

2
(�i+1 + �i�1 − 2�) (10)

Case 3: �i+1 ≥ �i, �i < �i�1

d�i

dt
= b(� − �i) (11)

Case 4: �i+1 < �i, �i < �i�1

d�i

dt
=

b

2
(�i+1 − �i) (12)

where b = f/r̄. In this case, the dynamics of their angles is
considered to represent a switched system according to each
robot’s three angles �i�1, �i, and�i+1.The heading direction
di of the i-th robot can be described by �i�1 and �i as fol-
lows.

di =
{

1 (�i ≥ �i�1)
0 (otherwise)

(13)

where ”0” and ”1” indicate a counterclockwise and clock-
wise heading direction, respectively. By using equation 13,
equations 9-ref(84) are written as follows.

�̇ = As� + Bs (14)

� = [�1 . . . �i . . . �n]T (15)

As,i,j =


b
2di (j = i − 1)
�b
2 (di+1 − di + 1) (j = i)

b
2 (1 − di+1) (j = i + 1)
0 (otherwise))

(16)

Bi = �(di+1 − di) (17)

s = {d1, . . . , di, . . . , dn} ∈ {0, 1}n (18)

where �n = 2� −
∑n�1

i=1 �i. For simplicity, let b = 1 in
the remainder of this paper. In the next subsection, we prove
the practical asymptotic stability of the system represented
by equation 14.

4.4 A four-robot group
In this section, we discuss the practical asymptotic stabil-

ity of a four-robot system. A four-robot group has 14 control
inputs, s = {1, 0, 1, 0}, {1, 0, 0, 1}, {0, 1, 1, 0}, {0, 1, 0, 1},
{0, 0, 1, 1},
{1, 1, 1, 0}, {1, 1, 0, 1}, {1, 0, 1, 1}, and {0, 1, 1, 1}}．

When s = {1, 0, 0, 0}, the result of the left of equation 6
in this case by using equation 16 is w(�) = −4�2 − 3�2

1 −
4�1�2 − 3�2

2 + 6�(�1 + �2) + 8��3 − 6�1�3 − 4�2�3 −
4�2

3. Therefore, the maximum of w(�) in the given range
is calculated by a Lagrange multiplier. We rewrite z(�) =
−w(�) as a minimization problem.

The set of constraints representing the control input s =
{1, 0, 0, 0} is �1 > �4 ∧ �2 < �1 ∧ �3 < �2 ∧ �4 <

�3 ∧ �1, �2, �3 > 0, �4 > 0. We define the following func-
tions from this condition by adding equal conditions for con-
venience.

g1(�) = 2� − 2�1 − �2 − �3 ≤ 0

g2(�) = �2 − �1 ≤ 0

g3(�) = �3 − �2 ≤ 0

g4(�) = −�1 ≤ 0

g5(�) = −�2 ≤ 0

g6(�) = −�3 ≤ 0

g7(�) = −2� + �1 + �2 + �3 ≤ 0

(19)

∇g1 = [−2 − 1 − 1]T ,∇g2 = [−1 1 0]T

∇g3 = [0 − 1 1]T ,∇g4 = [−1 0 0]T

∇g5 = [0 − 1 0]T ,∇g6 = [0 0 − 1]T

∇g7 = [1 1 1]T (20)

Then, the following Karush-Kuhn-Tucker conditions are ob-
tained from ∇z(�) +

∑7
i ∇gi(�) = 0.

6�1 + 4�2 − 6� + 6�3 − 2u1 − u2 − u4 + u8 = 0

4�1 + 6�2 − 6� + 4�3 − u1 + u2 − u3 − u5 + u7 = 0

6�1 + 4�2 − 8� + 8�3 − u1 + u3 − u6 + u7 = 0

u1(2� − 2�1 − �2 − �3) = 0, u1 ≥ 0

u2(�2 − �1) = 0, u2 ≥ 0

u3(�3 − �2) = 0, u3 ≥ 0

u4(−�1) = 0, u4 ≥ 0

u5(−�2) = 0, u5 ≥ 0

u6(−�3) = 0, u6 ≥ 0

u7(−2� + �1 + �2 + �3) = 0, u7 ≥ 0

(21)

This equation reveals that the maximum of w(�) in the
given range is w(�) = 0 at �1 = �2 = �3 = �4 = π

2 .
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Fig. 5. Time to achieve enclosure task by 6 robots group

Fig. 6. Time to achieve enclosure for 12-robot group.

Therefore, equation 6 is satisfied when this control signal s

is activated.
We verify the maximum of w(�) for all other s values in

a similar manner.
When s = {0, 1, 0, 0}, w(�) = −4�2 − 4�2

1 − �2
2 −

2�2�3 − 3�2
3 − 2�1(�2 + 2�3) + 2�(4�1 + �2 + 2�3). The

maximum of w(�) is 0 at (�1, �2, �3) = (π
2 , π

2 , π
2 ).

In the same manner as these cases, the maximum of w(�)
in all of the remaining cases, is 0.

Therefore, equation 6 is satisfied for any control input s.
Furthermore, C = {0} satisfies 0 ∈ Int(C) because �1 =
�2 = �3 = �4 = π

2 is a fixed point for which fs(�) = 0 for
all fs. Therefore, equation 7 is satisfied.

4.5 Verification of target enclosure task for larger

groups
The above discussion shows that the proposed model can

achieve angle equalization for a small group. However, we
did not provide the proof of the distance task represented by
equation 3. In addition, we did not verify the performance for
groups of more than four robots. Therefore, in this section,

we discuss the ability to achieve target enclosure by using
computer simulations.

We examined 3-, 4-, 6-, and 12-robot groups. There was
only one target at the origin, and it was assumed that r̄ =
20. The initial position of a robot was specified inside a 100
× 100 rectangular region by a 2D uniform random number
generator. We counted the time to achieve target enclosure
as the time until Ed + Ea < 0.5 in equations 3 and 4. This
simulation was repeated 100 times for each group size.

Fig.5,6 show the results for the 3-, 4-, 6-, and 12-robot
groups, respectively. The x-axis of each graph indicates the
time required to achieve enclosure, and the y-axis denotes
the frequency. For the three-robot system, the average time
required for enclosure is 813.123, and the standard deviation
is 125.737. For the four-robot system, the average time is
813.123 and the standard deviation is 125.737. For the six-
robot system, the average time is 874.143 and the standard
deviation is 96.921. For the 12-robot system, the average
time is 1044.371 and the standard deviation is 115.408.

Thus, as the number of robots increases, the time required
to achieve target enclosure increases. However, in all the
simulations, groups of any size can achieve this task. There-
fore, we conclude that any group of fewer than 13 robots can
achieve target enclosure.

5 CONCLUSION
In this paper, to achieve a highly scalable target enclosure

model, we examined a new reference model based on that of
Takayama et al., in which each robot determines its actions
according to its nearest neighboring robot. We demonstrated
the model’s performance using an analytical discussion and
a set of computer simulations. Conventional research on tar-
get enclosure assumes that a robot can recognize predefined
team-mates from among many robots. However, this recog-
nition becomes difficult as the group size increases. In the
proposed model, a robot does not need this recognition capa-
bility. The results of switched systems theory were applied
instead of the graph Laplacian to prove the convergence to
an enclosure state because the connectivity of the reference
relationship among robots is not maintained. We analytically
proved that a group containing fewer than five robots can en-
close a target. Computer simulations with n = 3, 4, 6, and
12 suggest that a group of 12 or fewer robots can enclose a
target.
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