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Abstract: We investigate an associative memory model consisting of both self-oscillatory and non-self-oscillatory oscillators
that store temporal patterns on relative phase differences between the oscillators. We numerically simulate this model and show
that the speed of memory retrieval is enhanced with increase in the proportion of number of non-self-oscillatory elements. These
results imply, from a viewpoint of neuroscience, that the presence of resting or down state of neurons facilitates an ability of
memory retrieval.
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1 INTRODUCTION
There have been many associative memory models com-

posed of various elements that store various types of patterns.
Aoyagi proposed an associative memory network, each el-
ement of which is an oscillator, and represents patterns in
their relative phase difference [1]. In this model, the Stuart-
Landau equation is used as the model of oscillator. The os-
cillators are connected with Hopfield-like weight matrix [2].

Dynamics of coupled oscillators are well studied indepen-
dently of the associative memory models. Daido and Nakan-
ishi studied globally coupled oscillators which are composed
of two types of oscillators: namely, active and inactive oscil-
lators [3, 4]. The active oscillator shows oscillation without
an external driving force (self oscillatory) and its underlying
mechanism is characterized by a stable limit cycle. The in-
active oscillator requires external driving forces to oscillate
(non-self oscillatory) and is characterized by a stable equi-
librium point. If the proportion of number of inactive oscilla-
tors in the coupled oscillator system is sufficiently small, all
the oscillators show synchronous oscillation; the active os-
cillators oscillate around the limit cycle and the inactive ones
oscillate around the stable equilibrium with small amplitude.
If the proportion of number of inactive oscillators becomes
large, on the other hand, the system shows a phase transition
and stops the oscillation. This phase transition is called an
aging transition [3, 4].

In the present study, we investigate an associative network
model which stores phase information and is composed of
both active and inactive oscillators. We first model the asso-
ciative network model. Then, we analyze the dynamics of the
system while the system retrieves stored pattern, i.e., how the
increase in the proportion of number of inactive oscillators

contributes to the initial quickness of retrieving the stored
patterns. Finally, we discuss the underlying mechanism of
this initial quick memory retrieval and an interpretation of
the model from a viewpoint of neuroscience.

2 MODEL
Our model is based on the associative memory model pro-

posed by Aoyagi [1], which is a coupled oscillator system
that stores phase patterns in the coupling connections.

The coupled oscillator system is described by

dzi
dt

= fi(zi) +K(

N∑
j=1

Cijzj − zi), (1)

where zi is the complex state variable of the ith element.
The interactions between the elements are represented by the
complex weight matrixCij and the coupling strengthK ≥ 0.
As for the oscillation dynamics fi, we follow Aoyagi [1] and
use the Stuart-Landau equation as follows:

fi(zi) = (αi + iΩ− |z2i |)zi, (2)

where the parameter αi determines the dynamical character-
istics of the ith element; the ith oscillator is active if αi > 0

and inactive if αi < 0.
This coupled oscillator system is an associative memory

model that stores relative phase differences between the el-
ements. The µth phase pattern is represented by a complex
vector Zµ = (Zµ1 , . . . , Z

µ
N ), where each element Zµi with

|Zµi | = 1 represents the phase of the ith element in the pat-
tern. Note that multiplying by eiθ does not alter the em-
bedded pattern, since only the phase differences are stored.
Here, we assume the phase patterns Z1, . . . , ZP are orthog-
onal. The complex weight matrix C is determined from the
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Fig. 1. Dynamics of the coupled oscillator system with p = 0.6. The trajectries of zi in the complex plane (left) and the time
evolutions of the imaginary part Imzi (right) of five active oscillators (dashed lines) and five inactive oscillators (solid lines) are
shown.

phase patterns Z1, . . . , ZP as follows:

Cij =
1

N

∑
µ

Zµi · Z
µ
j . (3)

Using the model whose all the elements are identical (αi =
1), Aoyagi [1] showed that the coupled oscillator system re-
calls the embedded phase patterns.

In this paper, we consider a network consisting of both ac-
tive (αi = 1) and inactive (αi = −2) oscillators. This kind of
network with active and inactive oscillators has been inves-
tigated by Daido and Nakanishi [3, 4], though their model
is not for associative memory. Specifically, they studied the
system with uniform connection weights Cij = 1/N as fol-
lows:

dzi
dt

= fi(zi) +K(
1

N

N∑
j=1

zj − zi). (4)

If the proportion of inactive oscillator p is small, inactive ele-
ments oscillate by effect of oscillation of active elements. If p
is increased, the oscillation stops at the critical value p = pc,
which is given by

pc =
K + 2

3K
. (5)

This phase transition is called an aging transition.
Retrieval of the µth pattern embedded in the system is

evaluated by the overlap Mµ with pattern Zµ defined by

Mµ =
1

N

∣∣∣∣∣∑
i

Zµi ·
zi
|zi|

∣∣∣∣∣ . (6)

This value shows a concordance rate between the state of the
system and the stored pattern Zµ. The larger M is, the more
accurately the pattern is retrieved.

3 SIMULATION RESULTS
We performed numerical simulations of the associative

memory model composed of N = 100 elements with Ω = 3.
For simplicity, the number P = 3 of orthogonal patterns are
chosen from {±1}N and embedded in the weight matrixCij .
The coupling strength is set to K = 1.

From N elements, pN elements are randomly chosen as
inactive elements, and the rest (1 − p)N elements are set as
active elements.

We set initial states close to a certain embedded pattern
Zµ ∈ {±1}N . Specifically, we obtained initial phases from
the chosen pattern by adding perturbations ∆θ that follow the
von Mises distribution, whose probability density function is
given by

P(∆θ|κ) = 1

2πI0(κ)
exp(κ cos∆θ), (7)

with the measure of concentration κ = 1

Figure 1 shows the dynamics of the system with p = 0.6

in the simulation. Active oscillators and inactive oscilla-
tors show oscillations with large and small amplitude, re-
spectively. Inactive oscillators converge to the corresponding
limit cycle more quickly than active oscillators.

In the following, we calculate the overlap Mµ with the
chosen pattern Zµ averaged over 3000 realizations.
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Fig. 2. The overlap M as a function of time t.

Figure 2 shows the overlap M as functions of time t for
each value of p. We find that M is an increasing function
in most of the time region. While the value of M for p = 0
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is the smallest at time t = 1, it becomes the largest at time
t = 2.
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Fig. 3. The overlap M as a function of p at t = 1 and 2. In
the range 0 ≤ p ≤ 0.8, it is almost increasing for t = 1 (solid
line) and almost decreasing for t = 2 (dashed line).

The dependence of the overlap on p is shown in Fig. 3.
The solid and dashed lines correspond to t = 1 and t = 2,
respectively. At t = 1, M is an almost increasing function
in the range between p = 0 and p = 0.8. At t = 2, M is an
almost decreasing function in the range.
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Fig. 4. The overlap M as a function of time t. The value of p
is changed from 0.6 to 0 at time t = 0.6 and t = 1. The cases
of p = 0 and p = 0.6 without the change are also shown.

These result show that small p enhances speed of retriev-
ing and decrease the value M after certain period of time.
We investigate the case in which the value of p is changed at
a certain time. Figure 4 shows the overlap M as functions
of t when the value of p changes from 0.6 to 0 at t = 0.6, 1.
The value of M at time t = 2 in the cases with the change
are larger than the case of p = 0.6 without the change. While

the value ofM at t = 1 in the case with the change at t = 0.6

is smaller than the case without the change, it becomes larger
at t = 2.

4 DISCUSSION
In the previous section, we observed that the system with

inactive oscillators shows quicker initial responses than with-
out inactive oscillators. This can be intuitively explained as
follows. Let ri and θi be the amplitude and the phase of the
state zi of the ith element, respectively; i.e., zi = ri exp iθi.
Then the dynamics of θi is given by

dθi
dt

= Ω+K
r?i
ri

sin(θ?i − θi), (8)

where r?i and θ?i are the amplitude and the phase of the input
to the ith element through Cij , respectively, as follows:∑

j

Cijzj = r?i exp iθ
?
i . (9)

The second term of Eq. (8) describes the effect that attracts
θi to θ?i . Thus its strength is inversely proportional to ri.
Since the amplitude ri is large for active elements and small
for inactive elements, the phases of inactive elements move
more quickly to an embedded pattern than active elements.

In the context of neuroscience, temporal aspects of neu-
ral activities have been considered to be important [6]. In a
neural network, spikes (action potentials) are responsible for
the mutual interaction and communication between neurons.
Multi-channel recording of neural activities often shows a
repetition of certain temporal patterns of spike train, which
may be caused by interactions among neurons. Such tempo-
ral aspects of neural activities are often modeled with cou-
pled oscillators as shown in the present paper. In Aoyagi’s
model, temporal patterns are represented as the phase dif-
ferences among oscillators and embedded in the complex
weight matrix.

Another intriguing observation of neural activities is about
the two-state dynamics [7], which is a characteristic switch-
ing of the membrane potential between two preferred levels,
namely the more polarized level (down state) and the more
depolarized level (up state). Similarly, the transition between
the resting state and the sustained oscillatory state is observed
and is modeled as a bistable system with a stable equilibrium
and a stable limit cycle [8]. Such a model is closely related to
Daido’s model in the sense that active and inactive element
coexist.

In the present study, to elucidate the contribution of co-
existence of active and inactive elements in the associative
network, we consider non-uniformity of the elements instead
of the bistability. We found that the proportion of inactive
oscillator is important for speed of retrieving a temporal pat-
tern. This indicates that the increase in proportion of neurons

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12), 
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 575



in resting state facilitates retrieval process of memories. Al-
though the proportion of inactive oscillators is fixed or time-
invariant in the present network model, real neurons dynam-
ically switch their state between up and down state. Contri-
bution of this dynamical aspect of switching to the ability of
memory retrieval should be evaluated in future.

5 CONCLUSION
We investigated the dynamics of pattern embedded oscil-

latory networks which include non-self-oscillatory elements.
The property of non-self-oscillatory element determines the
speed of retrieving stored patterns. This mechanism may
play some functional role in neural networks of the brain.
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