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Abstract: In cellular systems, complicated intracellular reaction circuits implement various types of information processing
in response to external stimuli such as decision-making. These processes involve stochastic fluctuations owing to low copy
numbers of molecules per cell and uncertainty of environmental signals. Major mechanisms that can cope with such noise,
known currently, are potential-induced bistability at the single-cell level, or mutual communication at the population level.
Another mechanism, noise-induced bistability, is recently demonstrated to be connected to optimal noise-filtering dynamics
from external stimuli. In this work, we focus on the difference of potential-induced and noise-induced dynamics in terms of their
information processing ability. Furthermore, we investigate the effect of mutual communication to the noise-induced dynamics.
To address these problems, we propose a mathematical model of an intracellular network that combines both bistablility. In
addition, we also investigate the impact of intercellular communication.
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1 INTRODUCTION

Information processing in response to external stimuli is
a fundamental function of all living systems. In cellular sys-
tems, for example, various types of information processing
such as decision-making are implemented by complicated in-
tracellular reaction circuits. However, all components of the
circuits such as transcriptional control, alternative splicing,
translation, diffusion and chemical modification reactions of
transcriptional factors, involve stochastic fluctuations owing
to low copy numbers of molecules per cell and uncertainty of
an external environment. These intrinsic and extrinsic noise
in the building components can inevitably disturb the cellular
information processing [1].

Two mechanisms are mainly known that can cope with
such noise: one is single-cell level, and the other is the popu-
lation level. At the single-cell level, a cell may have intracel-
lular circuits that can resist to noise. For example, a bistable
potential system implemented by mutually inhibitory reac-
tions can sustain its state against noise if the deterministic
force exerted by the potential is sufficiently strong. At the
population level, cells can also employ mutual communica-
tion to realize coordinated behavior out of noisy single-cell
level behavior [2, 3, 4]. While these mechanisms are preva-
lently observed within intracellular circuits, they may be in-
sufficient to explain all the biological phenomena because
such strong deterministic potential or communication may
reduce not only the noise but also the flexibility and variabil-
ity of the cells to the external stimuli.

On this issue, one of the authors has recently demonstrated
that intracellular networks that can optimally filter out noise
in external stimuli have ability to show noise-induced bista-
bility [5, 6], suggesting that noise-induced as well as deter-
ministic potential-induced dynamics can also efficiently cope
with noise. Furthermore, it is also suggested that such dy-
namics can optimally balance the suppression of noise and
sensitivity to external stimuli. Nonetheless, the difference
between potential-induced and noise-induced dynamics in
terms of their information processing ability has not yet been
clarified. Furthermore, even though mutual communication
of potential-induced dynamics has been intensively investi-
gated [3, 7, 8], almost nothing is known on the effect of mu-
tual communication to the noise-induced dynamics.

In this study, we tackle this problem using a mathe-
matical approach, and propose a model of an intracellu-
lar network that combines both potential-induced and noise-
induced bistablility. First, we analyze deterministic and
stochastic properties of this model by calculating null-clines
and bifurcation diagram. Next, by numerical simulations,
we confirm that this model exhibits bimodal histograms pro-
duced by the potential-induced and noise-induced bistability
in case of constant external stimuli. We also examine the re-
sponse of the model to a step-like external stimuli. Finally,
we introduce intercellular communication that enables each
cell to detect the state of the other cells and react together
with them. We investigate the responses to external stimuli
for different strength of communication to clarify the impact.
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2 COMBINED MODEL OF POTENTIAL- AND

NOISE-INDUCED BISTABILITY
2.1 Derivation of equation

In [5], it was demonstrated that the following autophos-
phorylation and autodephosphorylation reaction as an intra-
cellular network is approximately equivalent to an optimal
dynamics to infer the state of environment from noisy recep-
tor signal. Its Gaussian approximation was derived subse-
quently in [6] to further clarify the noise-induced bistability
in that cycle. We extend this model such that a new model can
have potential-induced bistability as well as noise-induced
bistability that the original model has.

The model is described as follows:

dZi

dt
= ZiZ̃iI(t) + ronH(Z̃i)Z̃i − roffH(Zi)Zi, (1)

where Zi ∈ [0, 1] and Z̃i := 1 − Zi are the state of
the system in i-th cell, such as ratios of phosphorylated
and un-phosphorylated molecules in a cell. Under this in-
terpretation, ronH(Z̃i) and roffH(Zi) are respectively the
rate of input-independent phosphorylation and dephosphory-
lation reactions that occur spontaneously where H(Z) :=
p + 2(1 − p)/(Kn

0 + Zn). When p = 1, Eq. (1) is
equivalent to the model derived in [6]. When p = 0,
ronH(Z̃i)Z̃i − roffH(Zi)Zi has a bistable potential by the
inhibition of state transition between Zi and Z̃i introduced
by the Hill’s kinetics. Thus, p ∈ [0, 1] controls the extent
to override bistable potential onto the original model. The
external input I(t) with extrinsic noise is described as the
following:

I(t) = α(�0Udt + σ ◦ dWt), (2)

where ◦ represents Stratonovich interpretation [9]. �0U is
the signal that the cell have to detect. σWtis the noise that
cell receives. �0 is introduced to control the strength of the
signal with respect to noise. The signal noise ratio (SNR)
�0/σ determines the ambiguity of the signal. α is the ampli-
fication factor of both signal and noise that a cell can control.
For notational simplicity, we define the following functions:

F (Z, U) =α�0UZZ̃ + ronH(Z̃) − roffZH(Z),

G(Z) =ασZZ̃.

2.2 Deterministic properties of Eq. (1)
Firstly, we analyze deterministic properties of our model.

The equilibrium state of Eq. (1) satisfies F (Z, U) = 0. By
solving this equation with respect to U, we obtain

Udet
null(Z) =

1
α�0

[
−ron

Z
H(Z̃) +

roff

Z̃
H(Z)

]
,

which is the analytic expression of the null-cline of Eq. (1).
For a given U , the equilibrium state of Z may have more than

one state. In other words, the system can have multi-stable
states. While the condition for multi-stable state is not gener-
ally expressed analytically, we can derive it for a symmetric
condition such that K0 = 1/2, ron = roff = r0. Fig. 1.
(a) and (b) show the null-clines of this system with respect to
the parameters n and p, respectively. Given these conditions,
Eq. (1) becomes symmetric with respect to the exchange of
Z and Z̃. Thus, when U = 0, Z = 1/2 is always one of
the equilibrium state. Therefore, the derivative of Udet

null(Z)
with respect to Z can be used as the condition for the tran-
sition from monostable to bistable state. More specifically,
dUdet

null(Z)
dZ

∣∣∣
Z=1/2

= 0 is the condition of changing the num-

ber of the equilibrium states. By rearranging this equation,
we have

p =
2n(n − 2)

2 − 21+n + 2nn
(n 6= 1),

which is depicted by the solid line in Fig. 2.

2.3 Stochastic properties of Eq. (1)
Next we clarify the properties of Eq. (1) when noise is

introduced. Let consider the situation such that U and σ are
constant and that dWt is the white Gaussian process. Then,
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Fig. 2. Bifurcation Diagram. The upper (lower) side area of
each curve correspond to bimodal (unimodal) distribution.
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Eq. (1) can be described by a stochastic differential equation
as

dZi = F (Z,U)dt + G(Z) ◦ dWt. (3)

We here use Stratonovich interpretation as the original work
did[6].

The probability distribution P(t, Z) of Eq. (3) then satis-
fies the corresponding Fokker-Planck equation [9] as

∂P(t, Z)
∂t

= −∂ [FIto(Z,U)P(t, Z)]
∂Z

+
1
2

∂2
[
G(Z)2P(t, Z)

]

∂Z2
,

where FIto(Z, U) := F (Z, U) + ασG(Z)(1/2 − Z). The
stationary state of Eq. (3) can be represented [9] as

Pst(Z) =
N

G(Z)2
exp

[
2

∫ Z FIto(Z ′, U)
G(Z ′)2

dZ ′

]
.

This equation can be solved analytically when p = 1 as

Pst(Z) ∝ 1
ZZ̃

(
Z

Z̃

)Ū

exp


− 2

(ασ)2
(

ron
Z + roff

Z̃

)


 ,

where Ū = 2(αµ0U+ron�roff )
(ασ)2 .

For p < 1, this equation cannot be analytically solved.
Nevertheless, some properties, especially stochastic bifurca-
tion, can be analytically derived. Let identify the peak posi-
tions of stationary distribution of Eq. (3) with the determin-
istic equilibrium points considered in the previous section.
Then, the change of the number of peaks can be regarded
as the bifurcation of the stochastic system, which is known
as phenomenological bifurcation [10]. The peak positions of
Pst(Z) satisfies ∂Pst(Z)

∂Z = 0. This equation can be solved
with respect to U as

Ust
null(Z) = Udet

null(Z) +
(ασ)2

α�0
(1/2 − Z).

Similarly to the deterministic case, Ust
null(z) becomes sym-

metric around Z = 1/2 when ron = roff = r0. In addition,
Z = 1/2 and U = 0 is always the equilibrium state under
the symmetric condition. Thus, the bifurcation points from
unimodal to bimodal distribution satisfy

dUst
null(Z)
dZ

∣∣∣∣
Z=1/2

=
dUdet

null(Z)
dZ

∣∣∣∣
Z=1/2

− (ασ)2

α�0
= 0,

which is also the condition for the change of the number of
peaks when d2Ust

null(Z)
dZ2

∣∣∣
Z=1/2

6= 0. Then we have

{
p = 2n(n�2)

2�21+n+2nn + (ασ)2/(4r0)
2�21+n+2nn (n 6= 1)

σ = 2 (n = 1),

which is depicted in Fig.2.

2.4 Simulation results
We compare monostable and bistable potential cases for

external input signal � = 0. We choose p = 1 for monostable
potential case and p = 1/8 for bistable potential case. We set
parameter of Hill function n = 3 to have bistable potential for
p = 1/8, and noise intensity σ = 7 to realize noise-induced
bistability for p = 1. We simulate Eq. (1) for �t = 0.001 and
N = 2000 by using Milstein scheme [9]. Fig. 3. (a) and (b)
show the results of monostable potential case whereas Fig. 3.
(c) and (d) show those of bistable potential case.

Then we simulate the response of cells to step-wise
change of external signal �0U from −� to +�. Now � = 21,
and time of step-wise change is at t = 0.1. Fig. 4. (a) and
(b) show responses of populations to the inputs. Both figures
show similar Zi trajectories and mean trajectory of Zi.

3 CELL-CELL COMMUNICATION MODEL
We modify Eq. (3) to have cell-cell communication by

adding the term for diffusive cell-cell communication. The
equation is described as follows:

dZi = F (Zi, U)dt + G(Zi) ◦ dWt

− D

N − 1

∑

j 6=i

(Zi − Zj)dt,
(4)

(a) Trajectories (MP) (b) Histogram (MP)

(c) Trajectories (BP) (d) Histogram (BP)

Fig. 3. Response to constant input. MP and BP represent
monostable and bistable potentials, respectively. (a) and (c)
show the trajectories of Zi. Solid curves are the trajectories
of Zi (We plot trajectories of only 10 cells). Dashed curve is
the trajectory of mean of Zi. (b) and (d) are the histogram.
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where D is the diffusion constant controlling the strength of
communication, and N is the total number of cells.

Fig. 4. (c) and (d) show the simulation results of the re-
sponse of cells to step-wise change of external signal �0U

from −� to +�. Now � = 21, D = 10, rising time of step
input is t = 0.1.

Comparison of Fig. 4. (a) (b) and Fig. 4. (c) (d) show
that fluctuation of Zi by noise is moderated by communica-
tion, which means that intercellular communication made the
transitions of cellular populations more adequate.

To confirm the effect of diffusion constant D, we conduct
simulation for various D. Fig. 5. (a) and (b) are the results
of monostable and bistable potential cases, respectively. We
plot the trajectories of mean of Zi for various D. The larger
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(c) With coupling (MP)
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Fig. 4. (a) and (b) are the response to step-wise input without
coupling. Solid curves are trajectories of Zi (We plot trajec-
tories of only 30 cells) and correspond to left axis. White
curve is trajectory of mean of Zi, correspond to left axis.
Dashed curve is external signal � and correspond to right
axis. (c) and (d) are the response to step-wise input with
coupling. The meaning of curves are the same as (a) and (b).
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Fig. 5. Average Zi in switching at various diffusion constant

D becomes, the faster the reaction of cellular population is in
both monostable and bistable potential cases.

4 DISCUSSION
In this study, we have examined the difference of

potential-induced and noise-induced bistability with respect
to their response to external stimuli with and without intercel-
lular communication. However, their difference is not clearly
observed. The reason of this small difference may be at-
tributed to the property of our model; bistable potential is
overridden onto the noise-induced bistability, indicating that
two mechanisms are not clearly separated. In order to reach
firm conclusion, we need further investigation and/or modifi-
cation of our models.
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