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Abstract: Phase synchronization is a mechanism that plays a crucial role for information processing in the brain, and coherence
is one of methods that are used to evaluate pairwise degree of phase synchronization. Coherence is also an important measure
for examining brain functions because it can indicate communication and cooperation among neurons. In this work, we study
the coherence patterns of spontaneous activity in the neural field model at criticality, which is a region where a second order
phase transition occurs. The results are summarized as follows. First, at high frequency bands, the system outside the critical
regime cannot communicate via phase synchronization at all. Second, the dynamical coherence patterns in the critical regime
show switching between high and low coherent states. Finally, we found that in a very brief period of time, there is the high
broadband coherence between some pairs of spatial points. This phenomenon can be observed only in the critical regime.
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1 INTRODUCTION

Critical phenomena occur at a second order or continuous
phase transition (a critical point). This point is at the bound-
ary between a stable and ordered state and a disordered state.
Critical phenomena can be found frequently in various natu-
ral systems, such as earthquakes and avalanches. This kind
of systems is characterized by scale invariance, which is a
power-law distribution of some variables, and by the diver-
gence of both spatial and temporal correlation scales.

Recently, there is a proposal by many authors suggest-
ing that neuronal networks probably operate on the critical
regime [1]. Some researches also show that at the critical
point, the dynamic range [2], memory capacity [3], and com-
putational power [4] are optimal in neural network simula-
tions. The critical neural network also provides important
factors for learning, such as flexible response and adapta-
tion to input [5]. Furthermore, there are some evidences
from experimental data pointing that criticality might under-
lie neural network behaviour, such as neuronal avalanches in
vitro [6], 1/f type power spectrum of local field potential
in visual neocortex [7] implying long-range correlations, and
1/fβ power spectrum of electroencephalograms (EEG) [8]
and functional magnetic resonance imaging (fMRI) [9]. In
addition, functional brain networks exhibit a power-law de-
gree distribution [10].

Even when someone receives no explicit sensory stimu-
lus and does not perform any task, which is called a resting
state, his brain is still active. This activity is brain sponta-
neous activity or so-called ongoing activity. In the most brain
experiments, spontaneous activity is filtered or averaged out
and treated as a baseline activity or noise because experi-

menters are interested only activity induced by performing
tasks or given stimuli. However, it was found that this sponta-
neous activity is not random noise but specifically organized
[11]. Until now, the function which spontaneous activity in
the brain serves for is still unclear. After all, the importance
of spontaneous activity is stressed by the fact that most of
the energy consumed by the brain is accounted for this activ-
ity, and task-induced activity increases only a small portion
(< 5%) of brain energy consumption [11].

Phase synchronization plays a crucial role for brain infor-
mation processing. It is one of the methods the brain uses
to code information and to allow distributed neural popu-
lations to communicate. Phase synchronization occurs not
only when external stimuli are presented but can also occur
in spontaneous activity of the brain during the resting state
[12]. Coherence is one of methods that are used to evaluate
pairwise degree of phase synchronization and is an important
measure for examining brain functions and structures. It can
indicate communication and cooperation between neurons.

Here, we use the neural field model tuned to the critical
region and regions outside to simulate the brain spontaneous
activity and studied some dynamical aspects of coherence
by adopting the analysis using a moving time window. The
results from the field at criticality are compared with those
from the fields far from critical point.

2 METHODS

2.1 Neural field model
Neural fields are the mesoscopic models used to describe

spatio-temporal dynamics of neural activity in the brain at
a tissue level, where there are many neural populations in-
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teracting with each other. Because a brain cortex tissue is
composed of a large number of neurons, we can take the con-
tinuum limit and characterize activity of neural populations
as a field [13]. Here, we use this model to describe activity
in the brain’s cortex tissue.

In neural field models, the dynamics of each point in
a field depends on its internal dynamics, activity of other
points, and an external stimulus. A common form of neu-
ral field equation [14] is the integro-differential equation

1
α

∂u(x, t)
∂t

= −u(x, t) +
∫ ∞

−∞
w(x − y)f(u(y, t))dy, (1)

where u(x, t) is the neural activity at point x and time t. It
corresponds to the local potential in this work. α is the decay
rate of activity. w(x) is the weight function, which describes
the strength of connections between points in the field. f(x)
is the firing rate function, which determines firing rate out-
put transmitted to postsynaptic neurons. The first term in the
right-hand side of equation (1) represents neurons’ internal
dynamics, while the second term is a convolution between
w(x) and f(x) representing influence of output from other
neurons weighted by synaptic efficacy between points.

There are many choices of proper w(x) and f(x). In this
research, we choose

w(x) = (2 − |x|)e−|x|

2
. (2)

It is called a Mexican hat function because its shape looks
like a Mexican hat. The lateral-inhibition connectivity used
by Amari [14] is the function of this type, too. The shape of
this weight function displays local (short-range) excitation
and distant (long-range) inhibition, which are typical cortical
connections. It is also assumed that this neural field is homo-
geneous and isotropic, i.e., the weight function is identical
for all neurons and depends only on distance between inter-
acting neurons. For the firing rate function f(x), we use a
half sigmoidal function,

f(x) =
2

1 + e−axΘ(x)
− 1, (3)

where Θ(x) is the Heaviside step function. The negative in-
put cannot send out the output at all. Here, a is a parameter
controlling steepness of the function when x > 0.

The real brain tissue is noisy and also has spontaneous
activity, so we add a noise term ξ and small external field h

representing spontaneous activity to the equation (1). Now,
we have a neural field model of the form

1
α

∂u(x, t)
∂t

= −u(x, t) +
∫ ∞

−∞
w(x − y)f(u(y, t))dy

+h(x, t) + ξ(x, t). (4)

ξ is a multiplicative white noise with 〈ξ(x, t)ξ(x′, t′)〉 =
σu(x, t)δ(x − x′)δ(t − t′), and σ is noise intensity. For the
spontaneous activity, we use a constant h(x, t) = h.

2.2 Critical point
Our neural field model (equation (1), (2), and (3)) can fea-

ture second order phase transition and a critical point. The
steepness variable a in equation (3) works as a control pa-
rameter. To identify a critical point, we want to know at
which value of a, a uniform stationary solution u(x) = 0
for all x begins to be unstable, or the order parameter 〈u〉 =
1

2L

∫ L

−L
u(x)dx, where L is a half size of the neural field,

becomes nonzero.
Then, we did simulations of one dimensional neural field

and consider the model’s bifurcation graph between the order
parameter 〈u〉 versus the control parameter a (Fig. 1.). Ac-
cording to the diagram, we can see that many possible neural
activity patterns can emerge. However, the point that a non-
uniform stationary solution begins to appear is ac ≈ 1.782,
which is the position of a critical point. From now, we will
call the left side of the critical point (a < ac) a subcriti-
cal region and the right side of the critical point (a > ac) a
supercritical region, while a critical region is placed in the
vicinity of ac.

Fig. 1. A bifurcation diagram of the neural field model. A
blue, red, green, pink, and light blue lines represent a pattern
of 1, 2, 3, 4, and no bump, respectively.

In our simulation, we used a = 1.782, 1.982, and 1.582
to represent critical, supercritical, and subcritical region, re-
spectively. We used L = 20 and applied periodic boundary
condition to the field. Other parameters were set as follows:
decay rate, α = 0.2; noise intensity, σ = 1; and spontaneous
activity, h = 0.00001.

2.3 Dynamical coherence
The coherence or magnitude-squared coherence is used in

spectral analysis for measuring of the phase consistency and
one of methods to determine a degree of phase synchroniza-
tion between a pair of signals. It does not only determine the
dependency between simultaneous values of two time series
but also considers leading and lagging relationships. The co-
herence between signals x(t) and y(t) at given frequency f
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is defined by

Cxy(f) =
|Pxy(f)|2

Pxx(f)Pyy(f)
, (5)

where Pxy is the cross power spectral density (CPSD) be-
tween x(t) and y(t), which is the Fourier transform of cross
correlation, and Pxx and Pyy are power spectral densities of
x(t) and y(t), which are the Fourier transform of autocorrela-
tion. Also, note that the coherence is a function of frequency
f , and signals are regarded as the superposition of each fre-
quency component.

The coherence value ranges from 0 to 1. The coherence
value of 1 or perfectly coherent signals indicate that the phase
difference between two signals is fixed with time, while the
value of 0 means that the two signals are completely unre-
lated. However, noise in the systems can contribute to the
coherence greater than zero.

We were interested in dynamical coherence patterns,
which mean that coherence values can change in time. We
begin with defining the time window ∆t as a length of time
series at each time step (here, ∆t = 2000). Then, move this
frame forward by 1 step in each time step until it reaches the
terminal time point. Consequently, dynamical time window
is constructed, and we obtain a set of time series at each time
step in which we can measure dynamical quantities of our
interest, coherence in this case.

3 RESULTS
The spatial averages of dynamical coherence between the

point x = 0 and all other points in the field for four frequency
bands (f0, 2f0, 3f0, and 4f0) from one sample of simulations
are shown in Fig. 2 (Here, f0 = 5 Hz, and the sampling rate
determined from the time constant (decay rate) α is 2000
points). The dynamical coherence of random noise is also
shown for being a reference of insignificant coherence level.
It is apparent that the highest coherence appears in the critical
region at all frequency bands. In the other regions, the coher-
ence is very low, particularly in higher frequency bands. Ac-
tually, at higher frequencies (≥ 2f0), only coherence values
in the critical region are significantly higher than the coher-
ence level of noise, though, sometimes the coherence level in
supercritical region can be little higher than noise’s but still
lower than the critical region’s. However, there are some pe-
riods of time where the coherence in the critical region drops
to the same level with or lower than noise’s.

Another interesting phenomenon observed only in the
critical region is broadband coherence. For the coherence of
some pairs of spatial points, there are some short periods of
time where high coherence appears in many frequency bands.
For example, Fig. 3. shows dynamical coherence in all fre-
quencies between the point x = 0 and x = −20 at the critical
region in the same simulation of Fig. 2.

Fig. 2. Spatially average values of dynamical coherence be-
tween the point x = 0 and the others of the three regions
in f0, 2f0, 3f0, and 4f0 frequency bands including that of
random noise.

Fig. 3. The pairwise dynamical coherence between points x = 0

and x = −20. The arrow points the brief periods of high broadband
coherence.
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4 DISCUSSION & CONCLUSION
The dynamical coherence is highest in the critical region.

Actually, at frequencies higher than 2f0, only coherence in
the critical region is significantly higher than coherence of
noise. This result shows that outside the critical region, neu-
rons in the field communicate to each other by high frequency
bands much less efficiently than those at criticality. Also, it is
at criticality that neurons can communicate most efficiently
by any frequency, although there are some periods that the
coherence level drops to a value of a non-coherent state. The
rise and drop of coherence can be regarded as coherence
switching. Archerman and Borbély demonstrated the simi-
lar switching in human EEG during NREM-REM (non-rapid
eye movement and rapid eye movement) sleep cycles [15].

Furthermore, we found that only at criticality, there are
some periods in time that the coherence of some pairs be-
come broadband, i.e., coherence occurs in almost all frequen-
cies at the same time. One reason for this phenomenon is that
power spectral density and squared CPSD’s cross-frequency
correlations are very high in the critical region (the results are
not shown). However, its origination and functions still need
further investigation. Gervasoni and his colleagues found the
high transient broadband coherence occurring at global brain
state transitions in rats’ LFP (local field potential) [16]. They
also suggested that this transient coherence may construct
distributed structures of functional connectivity and allow in-
formation flow between neurons.

In summary, we used the neural field model to simulate
spatio-temporal evolution of spontaneous neural activity in
the critical regime, namely, the region around a critical point.
Then, dynamical coherence patterns were studied in the crit-
ical region compared with regions outside. Our study sug-
gests that communication between neurons in the field is op-
timized in the critical region. Also, in this region, we ob-
served many phenomena that are consistent with the empiri-
cal experiments of the brain.
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