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Abstract: We have analyzed the synchrony of neurons using the effective input theory. First, the dependence of intra-regional
synchrony on the strength of synaptic connections is clarified. When the synaptic connections are weaker than thresholds of
neurons, spontaneous firings do not exist. Second, we have studied the inter-regional synchrony of two regions connected by
modulatory common noises. As a result, under the appropriate modulatory-effects there exist nontrivial sets of synchronized
states of regions. Furthermore, at least one of these two regions satisfies the condition of intra-regional synchrony. When both
regions do not satisfy the condition of intra-regional synchrony, these two regions should have the same structure of synaptic
connections in order to synchronize inter-regionally.
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1 INTRODUCTION

Up to now, the input trains to a neuron are mainly
described as stochastic processes in such as Ricciardi[1],
Stein[2], and others. Because the properties of the stochas-
tic processes with random Langevin forces are well known
(Uhlenbeck and Ornstein[3]), we can easily obtain a lot of
essential properties of neurons with applying the stochastic
theories. However, methods of stochastic theories approxi-
mate the neurons to a single neuron framework which corre-
sponds to the mean-field theory or the phenomenological the-
ory. Essentially these approximations do not include synaptic
connections directly. On the other hand, Chen and Jasnow[4]
formulate the ”effective input theory”, which includes one
or more synaptic connections using ”effective inputs”. Here,
the ”effective inputs” denote the mean value of inputs to pop-
ulations of several neurons, namely ”cluster”, from outside
neurons through the synaptic connections. Thus the effec-
tive input theory is useful to clarify the effects of synaptic
connections on synchronies of neurons.

Using the effective input theory, we have studied the con-
ditions of the synchrony in two typical cases as follows:

(1) When neurons are firing spontaneously (and periodi-
cally) without external inputs from outside the system, there
assumes to exist only effective inputs. First, we obtain the
frequency of synchronous firing of neurons under effective
inputs. Then we require the condition that the effective inputs
corresponds to the frequency of synchronous firings. From
this condition, namely ”self-consistency”, we obtain the fre-
quency of the synchronous firing. If the self-consistency is
not fulfilled by any frequency, the synchronous firing does
not occur. From the above discussion, we have shown that

high frequency is obtained for strong synaptic connections,
while low frequency is obtained for weak synaptic connec-
tions.

(2) When the neurons additionally receive modulatory ef-
fects, we have examined the effects on synchronies of neu-
rons. We have introduced two independent clusters of neu-
rons and obtained the self-consistency using the effective in-
put theory. Here the synaptic connections and external inputs
have changed under the modulatory effects. If we assume
that modulatory effects are global, two independent clusters
receiving the same modulatory effects correlate each other.
Then we analyzed the condition of synchrony between the
independent areas.

In section 2, we make a brief review of the effective in-
put theory and discuss synchronized firings of neurons in a
cluster. Then we obtain the conditions between synaptic con-
nections and thresholds for the spontaneous synchronized fir-
ings. In Section 3, we apply the effective input theory for
synchronization between different regions with modulatory
common noises. In Section 4, we summarize the results of
our studies.

2 EFFECTIVE INPUT THEORY
In this section, we make a brief review of the effective in-

put theory[4] for discussing a periodic synchronized firing of
neurons located in the same cortex region, namely ”sponta-
neous firings”, using our formulation.

At first, we approximate the neuron connections as shown
in Fig.1. Because the neurons are connected very complexly,
we approximate the cluster neuronsi andj whose membrane
potentials are denoted asVi(t) andVj(t), respectively, with
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theeffective inputIeff. The effective inputIeff includes large
numbers of inputs from outside of the cluster.

Fig. 1. Approximation of the cluster neurons: The neurons
are connected each other as shown in the left-side figure. We
approximate the neuron connections to the cluster including
the neuronsi andj and the effective input as shown in the
right-side figure.

Then we obtain the effective equations of motion about
the membrane potentialsVi(t) andVj(t) as follows:

τ
d

dt
Vj(t) = −Vj(t) + Ieff (1)

and

τ
d

dt
Vi(t) = −Vi(t) +

c∑
j=1

τwij
∑
k

δ(t− tkj ), (2)

where the parametersτ ,wij , c, andtkj denote time-constants,
synaptic weights, connection numbers, and thek-th firing
time of neuronj, respectively.

From Eq.(1), the membrane potentialVj(t) is obtained as

Vj(t) = Ieff(1− e−t/τ ). (3)

Then we obtain the firing timetkj = kTj using the effective
input Ieff as

Tj = −τ log
Ieff − θ
Ieff

(4)

with the threshold potentialθ. Here, for convenience of cal-
culations, we use a simple condition that the resting potential
and the reset potential after firing take the same value of0.

The time dependence ofVi(t) is derived from Eq.(2) under
the firing ofj-neuron satisfying Eq.(4) as follows:

Vi(t) =
1

τ
e−t/τ

∫ t

0

dses/τ
c∑
j=1

τwij
∑
k

δ(s− tkj )

=W
1− e−t/τ

1− e−Tj/τ
, (5)

wherethe parameterW =
∑
j wij means the total synap-

tic weight. Then, we obtain the cycle-timeTi of i-neuron’s
firings as

Ti = −τ log
[
1− θ

W
(1− e−Tj/τ )

]
. (6)

Now, we consider the self-consistency

Ieff =
1

T

∫ T

0

ds

c∑
j=1

τwij
∑
k(<t)

δ(s− tki )

≃ τ

T

c∑
j=1

wij

T/Ti∑
k=1

∫ T

0

dsδ(s− kTi)

=
τ

Ti
W. (7)

This consistency means a periodic synchronized firing of
neurons what we call ”spontaneous firing”. Then, from
Eqs.(4), (6), and (7), we obtain the self-consistent equation
as

τ

T
(1− e−T/τ ) =

(
θ

W

)2

, (8)

wherewe have redefinedT = Ti. The cycle-timeT of spon-
taneous firing of the cluster neurons is given as a solution
of Eq.(8). The functionf(T/τ) defined as the left-side of
Eq(8), namelyf(T/τ) = (τ/T )(1 − e−T/τ ), is plotted in
Fig.2. As is shown in Fig.2, the functionf(T/τ) has the
asymptotic value1 in the case ofT → 0 (namely the fre-
quencyν = 1/T → ∞). Consequently, in the case of
θ > W , there does not exist the spontaneous firing. On the
other hand, in the case ofθ < W , there exists the sponta-
neous firing. This result is supported by the following physi-
cal phenomena, that is, the firing frequency of neurons are
enhanced by effective inputs (from neighbor neurons) ex-
ceeding the threshold potential. Meanwhile the spontaneous
firing does not occur under the weak effective inputs.

3 SYNCHRONY OF DIFFERENT REGIONS
We apply the above effective input theory to analyze the

modulatory effects for synchronization between different re-
gions. Membrane potentials of neurons are modulated by
diffuse modulatory systems, for example, norepinephrine, 5-
hydroxytryptamine, dopamine, and others. These transmit-
ters cause diffusive effects to neurons, and modulate the neu-
ron’s behaviors (especially the acceptance of noise effect).
Thus we introduce a model which has two neural clusters and
the common random input trains from modulators, as shown
in Fig.3.

At first, we analyze the membrane potentialsVi(t) and
Vj(t) in the region R1. The equations of motion of neurons
in the region R1 are defined as follows:

τ
d

dt
Vj(t) = −Vj(t) + Ieff + η(t) (9)
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Fig. 2. Condition of spontaneous firings: The vertical axis
expresses the rateθ/W while the horizontal axis expresses
the firing frequency. The condition has the asymptotic value
1 with respect toθ/W . Then, in the case ofθ > W , sponta-
neous firing never occurs.

Fig. 3. Modulating effects for populations of neurons: Neu-
rons in the two different regions (R1 and R2) receive the com-
mon noise from the diffuse modulatory systems. The regions
R1 and R2 synchronize through the common noise.

and

τ
d

dt
Vi(t) = −Vi(t)+

c∑
j=1

τwij
∑
k(<t)

δ(t− tkj )+ η(t), (10)

using the effective inputIeff and the common random input
η(t). Here the random input assumes to be a stochastic input
train with the average⟨η(t)⟩ = λ.

From Eq.(9), the average potential⟨Vj(t)⟩ is obtained as

⟨Vj(t)⟩ = (Ieff + λ)(1− e−t/τ ). (11)

Then, the condition⟨Vj(Tj)⟩ = θ yields the cycle-timeTj as

Tj = −τ log
Ieff + λ− θ
Ieff + λ

. (12)

Similarly to the derivation of Eq.(5), we obtain the time de-
pendence ofVi(t) from Eq.(10) as

Vi(t) =
1

τ
e−t/τ

∫ t

0

dses/τ

 c∑
j=1

τwij
∑
k(<t)

δ(s− kTj) + η(s)


=We−t/τ

eTj/τ (et/τ − 1)

eTj/τ − 1
+

1

τ
e−t/τ

∫ t

0

es/τη(s)ds.

(13)

Then,the random average of Eq.(13) yields

⟨Vi(t)⟩ =
c∑
j=1

wije
−t/τ e

Tj/τ (et/τ − 1)

eTj/τ − 1
+ λ(1− e−Ti/τ ).

(14)
FromEq.(14), we obtain the mean value of cycle-timeTi as
the solution of the following equation:

θ = e−Ti/τ
c∑
j=1

wij
eTj/τ (eTi/τ − 1)

eTj/τ − 1
+λ(1−e−Ti/τ ). (15)

Usingthe self-consistency Eq.(7), and Eqs.(12) and (15), we
obtain the self-consistent condition

1 =
[
α
(α
x
+ λ̄

)
+ λ̄

]
(1− e−x), (16)

with the dimensionless parametersλ̄ = λ/θ, α = W/θ, and
x = T/τ , where we redefine the cycle-time asT = Ti.

The self-consistent condition in the region R2 is obtained
similarly as

1 =

[
α′
(
α′

x
+ λ̄

)
+ λ̄

]
(1− e−x), (17)

wherethe parameterα′ reflects the construction of synaptic
connections{w′

ij} in R2, namelyα′ =
∑
j w

′
ij/θ.

When the synchronized firing occurs between the regions
R1 and R2, the firing cycleT takes the same value in each
region. Consequently, we obtain the relation betweenα and
α′ under synchrony as

λ̄ =
x− α2(1− e−x)
x(1− e−x)(α+ 1)

=
x− α′2(1− e−x)
x(1− e−x)(α′ + 1)

(18)

The second equation of Eq.(18) has nontrivial solution

α′ =
α− ex(α+ x)

(ex − 1)(α+ 1)
. (19)

The solutionsα = α′ and Eq.(19) are shown in Fig.4. From
the discussion in Section 2, in the case of|α| > 1, R1 shows
the spontaneous firing, while, in the case of|α| < 1, R1 does
not show the spontaneous firing. Similar relation is shown
in R2 with respect to|α′|. Then, from Fig.4, it is necessary
to lead the nontrivial synchrony that the parameters|α| and
|α′| take(|α| > 1, |α′| > 1), (|α| > 1, |α′| < 1) or (|α| <
1, |α′| > 1). That is, there exists nontrivial synchrony of
two regions only in such cases that at least one region takes
conditions of spontaneous firings.

The strength of modulating effects̄λ is shown in Fig.5 us-
ing Eq.(18). Especially, when the parametersα andα′ take
the value|α| < 1 and |α′| < 1 (namely both R1 and R2
do not show the spontaneous firing), there exists only triv-
ial relationα = α′ for synchrony. Then, from Eq.(18), the
limiting behavior ofλ̄ for x→∞ andx→ 0 is obtained as

λ̄∞ ≡ lim
x→∞

λ̄ =
1

1 + α
(20)
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Fig. 4. Relation ofα andα′ wherex = 1.44: The verti-
cal axis express the parameterα′ while the horizontal axis
expressesα. Parametersα andα′ meansW/θ andW ′/θ,
respectively. These parameters mean the characters of each
region (R1 (α) or R2 (α′)). Of course, this graph has a sym-
metry betweenα andα′. We find the non-trivial relation
as shown in Eq.(19) only in the cases of(|α| > 1, |α′| >
1), (|α| > 1, |α′| < 1) and(|α| < 1, |α′| > 1).

and

λ̄0 ≡ lim
x→0

λ̄ ∼ 1− α
x

. (21)

Consequently, under the condition|α|, |α′| < 1, λ̄ satisfies
the conditions̄λ∞ > 0 andλ̄0 → +∞, that is, the parame-
ter λ̄(x) takes positive value for allx. This result shows the
following plausible physics: The modulatory effects should
enhance the firings of neurons in both regions when the spon-
taneous firing does not occur in each regions R1 and R2
(Fig.5). Additionally, the R1 and R2 should be constructed
by the same configuration (Fig.4). Conditions for synchrony
between the regions which do not show the spontaneous fir-
ing are very strict.

4 CONCLUSION
We have studied the synchrony firings of neurons in typi-

cal two cases.
First, using the effective input theory, we have analyzed

the inner region synchrony of neurons (spontaneous firing)
using the effective input theory within the region. We
have clarified that the inner region synchrony depend on the
strength of synaptic connections. When the synaptic connec-
tions are weaker than thresholds of neurons, there do not exist
spontaneous firings.

Second, we consider the synchrony between two regions
connected by modulatory common noises. The synchrony of
different regions through the modulators occurs in two typi-
cal cases as follows:

(1) At least one of two regions takes the state for sponta-
neous firings and receiving appropriate modulation.

Fig. 5. Dependence of common noise on the synchrony fre-
quency: The vertical axis expresses the parameterλ̄ while
the horizontal axis expresses the parameterx. The parameter
λ̄ means the strength of common noises, and the parameter
x means the cycle-time of a synchrony. We chose the pa-
rametersα = −1.14,−0.46, 0.76 and1.40. These cases are
corresponds to each region of Fig.4.

(2) When both two regions do not take the state for spon-
taneous firings, these two regions should be constructed
by the same synaptic connections for synchrony. Addi-
tionally, modulatory effects enhance the firing of neu-
rons in both regions.

The second condition is very strict, and may be very rare.
We have considered the two regions for inter region syn-

chrony. If these regions assumed to be two of many regions
in brain, the parametersα andα′ can be treated as continu-
ous parameters. Then this model of synchrony may change
depending on the region of the brain.

This method is generally applicable to other complicated
dynamical systems. Although we have used the integrate-
and-fire neuron model in this study, any other neuron models
can be analyzed generally in the same way.
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