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Abstract: Robots have been playing an important roles on our life. In various field such as entertainment, military, space and

medical fields, the precise control is required according to the increase of the importance on robot. In robot manipulator position

control problem, modeling robot inverse dynamics is important because it can allow accurate robot control using computed

torque control and PD control with computed feedback. However, modeling rigid-body inverse dynamics is not simple and

not accurate in some case, because of unmodeled nonlinearities such as hydraulic cable dynamics, complex friction or actuator

dynamics. Instead of rigid-body dynamics, nonparametric regression such as Locally Weighted Projection Regression (LWPR),

Gaussian Process Regression (GPR) is proposed as alternative. Locally Weighted Projection Regression is fast, but it is difficult

to tune because of many user-parameters. Gaussian Process Regression has high accuracy but low computation speed. In other

word, high complexity of computation is drawback of Gaussian process regression. In Gaussian Process Regression, the inverse

of Gram matrix is a significant problem and it dominates the computation time. To improve the low computation speed, there

are many methods such as approximation method and Local Gaussian Process Regression (LGPR). In approximation method,

the approximation of inverse of Gram matrix is proposed and in local Gaussian Process Regression, the training data is divided

into local training data using Gaussian kernel. It generates M local models. After partitioned the training data, the local model

is trained. When test data is given, each local model predicts the local prediction. The total prediction value is weighted

average of M local prediction values. The weight is a similarity measure and it can be calculated by Gaussian kernel. Local

Gaussian Process Regression In this paper, Modified Local Gaussian Process Regression (MLGPR) is suggested for improving

accuracy and computation time of Local Gaussian Process Regression. Modified Local Gaussian Process Regression is used

adaptive method for partitioning the training data. Modified Local Gaussian Process Regression uses multiple model generation

threshold wgen values depending on the local target variance. Proposed method is demonstrated by 2-dimension regression

example and learning inverse dynamics of SARCOS arm. The result of simulations will be compared with other method such as

Gaussian Process Regression, Local Gaussian Process Regression. As a result, the accuracy of Modified Local Gaussian Process

Regression is improved and computation cost is reduced. The result represent Modified Local Gaussian Process Regression has

low computation cost as compared with Local Gaussian Process Regression.
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1 INTRODUCTION

Robots have been studied and applied in various field such

as entertainment, military, space and medical fields. The pre-

cise control is required according to the increase of the impor-

tance on robot. For more precise control, more precise models

of inverse dynamics is needed. In other word, precise models

of inverse dynamics allow the effective control [1] [2]. How-

ever, finding precise models of inverse dynamics is difficult in

some cases because of unmodeled nonlinearity. This modeling

error comes from hydraulic cable dynamics, complex friction

or actuator dynamics [3]. To solve this problem, the alterna-

tive method which is using nonparametric regression method is

proposed. The nonparametric regression method is a kind of

supervised learning, and it is more flexible than parametric re-

gression. This method predicts inverse dynamics model from

pre-measured data [6]. The most common used nonparametric

regression methods are Locally Weighted Projection Regres-

sion (LWPR) [4], Gaussian Process Regression (GPR) [5] and

Support Vector Regression (SVR). Although LWPR is fast ,ac-

curate and incremental learning is possible, it is hard to tune

due to many user parameters. GPR has high accuracy but its

computation cost is increased when the data is large. To over-

come the high computation cost, Local Gaussian Process Re-

gression (LGPR) [3][7][8][9] is proposed. LGPR is an algo-
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rithm which combines the accuracy of GPR method on one re-

gion with the good capability of LWPR to split the input do-

main into regions [6]. The more detail regression methods are

well organized and summarized in [6].

In this paper, Modified Local Gaussian Process Regression

(MLGPR) is suggested for improving accuracy and computa-

tion time of LGPR. In section 2, Gaussian Process Regression

and Local Gaussian Process Regression are presented in de-

tail. I propose Modified Local Gaussian Process Regression

(MLGPR) in section 3. MLGPR is used adaptive method for

partitioning the training data. In section 4, the simulation of

modified local Gaussian Process Regression is demonstrated.

The result of simulation will be compared with other method

such as Gaussian Process Regression, Local Gaussian Process

Regression. In section 5, we suggest conclusion.

2 LOCAL GAUSSIAN PROCESS REGRESSION
2.1 Gaussian Process Regression

A Gaussian Process is completely specified its mean func-

tion and covariance function. The covariance function k(x, x′)
can be any positive semi-definite functions. The square ex-

ponential(SE) covariance function is frequently used and are

given by:

k(xp,xq) = σ2
f exp(−

1

2
(xp − xq)

TM(xp − xq)) (1)

where σ2
f is data variance and M is the symmetric matrix and

it represent distance measure. θ = [σ2
f , {M}]T is the hyperpa-

rameters of a Gaussian Process.

Consider a set of n training data X = [x1,x2, ...,xn] and

y = [y1, y2, ..., yn]. Using the training data (X,y) and a new

data point x∗, we want to know the predictive distribution of the

corresponding y∗. The joint distribution of the training outputs,

y and the test outputs, y∗ is[
y

y∗

]
∼ N

(
0,

[
K(X,X) K(X,x∗)
K(x∗,X) K(x∗,x∗)

])
(2)

From the joint distribution, the predictive distribution is

y∗|x∗,X,y ∼ N(ȳ∗, cov(ȳ∗))

ȳ∗ = K(x∗,X)K(X,X)−1y = k∗Tα
cov(ȳ∗) = K(x∗,x∗)−K(x∗,X)K(X,X)−1K(X,x∗)

(3)

The computation cost for predictition is dominated by in-

verse of K−1. It is about O(n3), where n is the number of

training data. For large problem, computation cost increases

rapidly. This is main weakness in Gaussian Process Regres-

sion. For solving this problem, Local Gaussian Process Re-

gression [3] is suggested.

2.2 Local Gaussian Process Regression
A Local Gaussian Process Regression(LGPR) proposed

for reducing computation cost of GPR is inspired by local

weighted regression and Gaussian Process Regression. The

procedure of LGPR is as follows: Firstly, the training data

is partitioned into M local training data. here, the weight

wi which is similarity measure can be used for partitioning

the training data. After local Gaussian Process model is par-

titioned, for each test data x∗ the prediction of local model

ȳi(x∗) can be calculated by using eq(3). Finally, the predic-

tion of entire model ŷ(x∗) is given by weighted mean of all

local model predictions.

ŷ(x∗) =
∑M

i=1 wi(x,ci)ȳi(x∗)∑M
i=1 wi(x,ci)

(4)

where, i is the number of local models. The partitioning al-

gorithm of LGPR is represented in Algorithm 1 and the pre-

diction algorithm of LGPR is represented Algorithm 2. The

method for updating Cholesky matrix L and prediction vector

α is presented in [3].

Using LGP regression the computation cost can be reduced

from O(n3) to O(n31 + n32 + ... + n3k) where k is the number

of local model, n1 + n2 + ...+ nk = n.

3 MODIFIED LOCAL GAUSSIAN PROCESS RE-

GRESSION
3.1 Issue of Local Gaussian Process Regression

In the preceding sections the computation cost which is the

problem of GPR can be reduced by using local weighted re-

gression. But now the problem of LGPR is how to choose the

number of local model, in other word, how to divide the train-

ing data. According to determination of local training data,

the computation cost and accuracy of LGPR can be changed.

This represents the importance for dividing of local model. In

LGPR algorithm, the training data is partitioned by using sim-

ilarity measure w, and model generation threshold value wgen.

Thewgen is open parameter and there’s no rule to choosewgen.

Ifwgen is too large, many local model will be generated and the

number of training data in each local model is too small. Al-

though it takes small computation cost, the local model with

small data makes a ill distribution, i.e. accuracy of LGPR is

decreased. If wgen is too small, small local model with large

training data is generated. Accuracy of LGPR will be increased

but the computation cost will be high. LGPR loses the advan-

tage of computation cost.

3.2 Adaptive method for partitioning of Training Data
In LGPR, every local model has only one fixed model gen-

eration threshold wgen. Because the accuracy and computa-
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Algorithm 1 Partitioning the training data with incremental

model learning(Modified)

Input: new data point {xnew, ynew}
for i = 1 to number of local models do

Compute proximity to the ith local model:

wi = k(xnew, ci)

end for
Take the nearest local model: v(i) = max

i
wi

if v(i) < wgen(i) then
Insert {xnew, ynew} into the nearest local model:

Xnew = [Xi,xnew], ynew = [yi, ynew]

Update the corresponding center: cnew = mean(Xnew)

Update the Cholesky matrix, Lnew and the prediction ve-

tor, αnew of local model

if the maximum number of data point is reached then
delete another point randomly

end if
Compute αnew by back-substitution

Update wgen {This is the new part of MLGP}
if Var(ynew) > E(Var(y)) then
wgen(i) = wgen(i)− δ

else
wgen(i) = wgen(i) + δ

end if
else

Create new model:

ci+1 = xnew, Xi+1 = [xnew], yi+1 = [ynew]

Initialize of new Cholesky matrix L and new prediction

vector α

end if

Algorithm 2 Prediction for a query point

Input:query data point x∗, M

Determine M local models closest to x∗
for i = 1 to M do

Compute proximity to the ith local model:

wi = k(x∗, ci)
Compute local prediction using kth local model:

ȳi(x∗) = k(Xi,x∗)Tαi
end for
Compute weighted prediction using M local models:

ŷ(x∗) =
∑M

i=1 wiȳi(x∗)∑M
i=1 wi

tion cost of LGPR are changed depending on wgen, using same

wgen on all local model is inefficient. When a local target vari-

ance Var(ynew) is large, the result of LGPR can’t predict the

original distribution. To use small wgen for improving accu-

racy of LGPR makes the number of local training data large

and makes computation cost high. On the other hand, when a

local target variance Var(ynew) is small, the result of LGPR is

good, even use of large wgen. So it is required change of wgen
depending on local target variance Var(ynew) and use differ-

ent wgen for local models. Therefore it makes a sense to set

large wgen to reduce computation cost, when local target vari-

ance is small. When local target variance is large, small wgen
is used for improving accuracy of prediction. This is a key

idea of MLGPR. Now every model has own wgen values and it

can be changed according to local target variance. If the wgen
of ith local model is bigger than mean of local target variance

E(Var(yi)), wgen is decreased as much as δ. It means that accu-

racy of LGPR is increased using more training data, when the

target variance is high. If the wgen of ith local model smaller

than mean of local target variance E(Var(yi)),wgen is increased

as much as δ. It means that computation cost of LGPR is de-

creased by reducing the number of training data, when the tar-

get variance is low. Modified method for partitioning training

data is included in Algorithm1.

3.3 Accuracy and Computation Cost of MLGP
Table.1 shows a comparison of computation cost GPR,

LGPR and MLGPR. In GPR, computation cost for calculation

of K−1 is about O(n3). In LGPR, the computation cost can be

reduced from O(n3) to O(n31 + n32 + ...+ n3
M ) due to using a

local prediction, where n is the number of training data, M is

the number of local model and ni the number of local training

data. In MLGP, the computation cost for calculation of K−1

is O(n3m1 + n3m2 + +n3
mM ) where nmi the number of local

training data , mM is the number of MLGPR local model. The

computation cost for prediction is O(n) in GPR, O(niM) in

LGPR and O(nmiM) in MLGPR. Here, nmi is bigger than ni,

when the variance of ith model is bigger than variance of tar-

get. Otherwise nmi is smaller than ni. Thus the computation

cost of MLGPR is usually lower than one of LGPR.

Table 1: The table of computation cost

Method For calculation of K−1 For prediction

GPR O(n3) O(n)

LGPR O(n31 + n3
2 + ...+ n3M ) O(niM)

MLGPR O(n3m1 + n3
m2 ++n3mM ) O(nmiM)

4 SIMULATION
In this section, simulation of Modified Local

Gaussian Process Regression is demonstrated by 2-
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dimension regression example and learning inverse

dynamics of SARCOS arm. 500 noisy training data

comes from the two dimensional function[4]: y =

max
[
exp(−10x1

2), exp(−50x2
2), 125 exp(−5(x1

2 + x2
2))

]
+

N(0, 005). Fig.1 shows the result of regression using MLGPR.

Its nMSE is 0.012 and it is lower than the LPGR one.

Fig.2 shows the result for inverse dynamics learning of

SARCOS arm. The data set consists of 45,000 training data

and 5,000 test data1. Fig.2(a) shows the nMSE of each link

of robot. Fig.2(b) is Computation cost of MLGPR and LGPR.

nMSE of MLGPR is lower than one of LGPR,

(a) Result of regression using ML-

GPR

(b) nMSE of GPR, LGPR, MLGPR

Fig. 1: 2-dimension regression example

5 CONCLUSION
Modified Local Gaussian Process Regression(MLGPR)

uses multiple model generation threshold wgen values depend-

ing on the local target variance. It means each local model has

own wgen. If the wgen of ith local model is bigger than mean

of local target variance , wgen is decreased for improving the

accuracy. Otherwise, wgen is increased for reducing compu-

tation cost. MLGPR is compared with GPR and LGPR. As

a result, the accuracy of MLGP is improved and computation

cost is reduced in simulation results.
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