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Abstract: We think that recently, due to the advances in many application areas such as computer graphics, computer vision,
image processing, robotics, and so on, it is useful for analyzing computation of three-dimensional information processing to
explicate the properties of three-dimensional automata. From this point of view, we have investigated many properties of three-
dimensional automata and computational complexity. On the other hand, the class of sets accepted by probabilistic machines
have been studied extensively. As far as we know, however, there is no results concerned with three-dimensional probabilistic
machines. In this paper, we introduce three-dimensional probabilistic finite automata, and investigate some accepting powers of
them.
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1 INTRODUCTION
Computer science is the systematized field of knowledge

and technology concerning computation. Its realistic begin-
nings can be traced back to the formalization of the concept
of an effective procedure and the advent of excellent digi-
tal computers. In theoretical computer science, the Turing
machine has played a number of important roles in under-
standing and exploiting basic concepts and mechanisms in
computing and information processing. It is a simple mathe-
matical model of computers which was introduced by Turing
[17] in 1936 to answer fundamental problems of computer
— ‘What kind of logical work can we effectively perform ?’
If the restrictions in its structure and move are placed on the
Turing machine, the restricted Turing machine is less pow-
erful than the original one. However, it has become increas-
ingly apparent that the characterization and classification of
powers of the restricted Turing machines should be of great
important. Such a study was active in 1950’s and 1960’s.
On the other hand, many researchers have been making their
effects to investigate another fundamental problems of com-
puter science — ‘How complicated is it to perform a given
logical work ?’ The concept of computational complexity
is a formalization of such difficulty of logical works. In the
study of computational complexity, the complexity measures
are of great importance. In general, it is well known that
the computational complexity has originated in a study of
considering how the computational powers of various types
of automata are characterized by the complexity measures
such as space complexity, time complexity, or some other
related measures. After that, the growth of the process-

ing of pictorial information by computer was rapid in those
days. Therefore, the problem of computational complexity
was also arisen in the two-dimensional information process-
ing. Blum and Hewitt first proposed two-dimensional au-
tomata — two-dimensional finite automata and marker au-
tomata, and investigated their pattern recognition abilities in
1967 [1]. Since then, many researchers in this field have been
investigating a lot of properties about automata on a two-
dimensional tape [17]. By the way, the question of whether
processing three-dimensional digital patterns is much diffi-
cult than two-dimensional ones is of great interest from the
theoretical and practical standpoints. In recent years, due
to the advances in many application areas such as computer
graphics, computer-aided design / manufacturing, computer
vision, image processing, robotics, and so on, the study of
three-dimensional pattern processing has been of crucial im-
portance. Thus, the study three-dimensional automata as the
computational model of three-dimensional pattern process-
ing has been meaningful. However, it is conjectured that the
three-dimensional pattern processing has its own difficulties
not arising in two-dimensional case. One of these difficul-
ties occurs in recognizing topological properties of three-
dimensional patterns because the three-dimensional neigh-
borhood is more complicated than two-dimensional case.
Generally speaking, a property or relationship is topological
only if it is preserved when an arbitrary ’rubber-sheet’ distor-
tion is applied to the pictures. For example, adjacency and
connectedness are topological; area, elongatedness, convex-
ity, straightness, etc. are not. During the past thirty years, au-
tomata on a three-dimensional tape have been proposed and
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several properties of such automata have been obtained. We
have also studied about three-dimensional automata, and in-
troduced many computational models on three-dimensional
input tapes. On the other hand, the classes of sets recognized
by one- or two-dimensional probabilistic finite automata and
probabilistic Turing machines have been studied extensively
[2-15, 18-22]. As far as we know, however, there is no results
concerning with three-dimensional probabilistic machines.
In this paper, we introduce three-dimensional probabilistic
finite automata, and investigate some their accepting powers.

2 PRELIMINARIES
Let Σ be a finite set of symbols. A three-dimensional tape

over Σ is a three-dimensional array of elements of Σ. The
set of all three-dimensional tapes over Σ is denoted by Σ(3).
Given a tape x ∈ Σ(3), for each integer j(1 ≤ j ≤ 3), we let
lj(x) be the length of x along the jth axis. The set of all x
∈ Σ(3) with l1(x)=n1, l2(x)=n2, and l3(x)=n3 is denoted by
Σ(n1,n2,n3). When 1 ≤ ij ≤ lj(x) for each j(1 ≤ j ≤ 3), let
x(i1,i2,i3) denote the symbol in x with coordinates (i1,i2,i3).
Furthermore, we define x [ (i1,i2,i3), (i′1,i′2,i′3) ], when 1 ≤
ij ≤ i

′

j ≤ lj(x) for each integer j(1 ≤ j ≤ 3), as the three-
dimensional input tape y satisfying the following conditions
: (i) for each j(1 ≤ j ≤ 3), lj(y) = i′j - ij + 1 ; (ii) for each r1,
r2, r3, (1 ≤ r1 ≤ l1(y), 1 ≤ r2 ≤ l2(y), 1 ≤ r3 ≤ l3(y), y(r1,
r2, r3) = x(r1 + i1 - 1, r2 + i2 - 1, r3 + i3 - 1).

A three-dimensional probabilistic finite automata (de-
noted by 3-PFA) is a 6-tuple M = (Q, Σ, δ, q0, qa, qr),
where Q is a finite set of states, Σ is a finite set of input sym-
bols, δ is a transition function, q0 ∈ Q is the initial state,
qa ∈ Q is the accepting state, and qr ∈ Q is the rejecting
state. An input tape for M is a three-dimensional tape over
Σ surrounded by the boundary symbols #’s (not in Σ). The
transition function δ is defined on (Q−{qa, qr})× (Σ∪{#})
such that for each q ∈ Q− {qa, qr} and each σ ∈ Σ ∪ {#},
δ[q, σ] is a coin-tossing distribution on Q × { East, West,
South, North, Up, Down, Stay }, where East means ‘ moving
east ’, West ‘ moving west ’, South ‘ moving south ’, North
‘ moving north ’, Up ‘ moving up ’, Down ‘ moving down ’,
and Stay ‘ staying there ’. The meaning of δ is that if M is in
state q with the input head scanning the symbol σ, then with
probability δ[q, σ] (q′, d) the machine enters state q′ and ei-
ther moves the input head one symbol in direction d if d ∈ {
East, West, South, North, Up, Down } or does not move the
input head if d = Stay. Given an input tape x ∈ Σ(3) M

starts in state q0 with the input head on the upper northwest
corner of x. The computation of M either accepts by enter-
ing the accepting state qa or rejects by entering the rejecting
state qr. We assume that δ is denoted so that the input head
never falls off an input tape out of the boundary symbols #’s.
M halts when it enters state qa or qr.

A three-dimensional alternating finite automaton (de-
noted by 3-AFA) is an alternating version of a three-
dimensional finite automaton. See [1, 6, 7] for the formal
definition of 3-AFA’s [16, 17].

Let L[3-PFA] = {T | T = T(M) for some 3-PFA M }.
L[3-AFA] is defined in the same way as L[3-PFA].

3 RESULTS
This section shows that the 3-PFA is incomparable with

3-AFA. We first give several preliminaries to get our desired
results. Let M be a 3-PFA and Σ be the input alphabet of M.
For each l,m, n ≥ 1, a three-dimensional type in Σl×m×n is
called an (l,m, n)− chunk over Σ. For any (l,m, n)-chunk
v with l ≥ 1, m ≥ 1, and n ≥ 2, we denote by v(#) the
pattern obtained from v by attaching the boundary symbols
#’s to v. Below, we assume without loss of generality that
M enters or exits the pattern v(#). Thus, the number of the
entrance points to v(#) (or the exit points from v(#)) for M
is 4m + 8. Let PT(v(#)) be the set of these entrance points
(or exit points). .

Lemma 3.1. Let L1 = {x ∈ {0, 1}(3)| l3(x) ≥ 2
∃ k (2 ≤ k ≤ l3(x)) [x[(1, 1, 1), (l1(x), l2(x), 1)] =

x[(1, 1, k), (l1(x), l2(x), k)]] (i.e., the top plane of x is iden-
tical with some another plane of x)]. Then, L1 ∈ 3-AFA —
3-PFA.

Proof: L1 is accepted by the 3-AFA M with acts as follows.
Given an input tape x with l3(x) ≥ 2, M existentially tries
to check that, for each i, j(1 ≤ i ≤ l1(x), 1 ≤ j ≤ l1(x)

x(i, j, k) = x(i, j, 1). That is, ont the kth plane of x(1 ≤ i

≤ l1(x), 1 ≤ j ≤ l2(x), 1 ≤ k ≤ l3(x), M enters a universal
statoe to choose one of two further actions. One action is to
pick up the symbol x(i, j, k), move up the symbol store in the
finite control, compare the stored with the symbol x(i, j, 1),
and enter an accepting state if both symbols are identical.
The other action is to continue to move next tape cell (in
order to pick up the symbol x(i + 1, j + 1, k) and compare
it with the symbol x(i+ 1, j + 1, k) and compare it with the
symbol x(i + 1, j + 1, 1). It will be obvious that M accepts
L1.

We next show that L1 ̸∈ 3-PFA. Suppose to the contrary
that there exsts a 3-PFA M’ recognizing L1 with error prob-
ability ϵ < 1

2 . For large m, let V(n) be the set of all the (2n,
2n, n)-chunks over {0, 1}. We shall below consider the com-
putations of M’ on the input tapes x with l1(x) = l2(x) = 2n

and l3(x) = n. Let c be the number of states of M’. Con-
sider the chunk probabilities p(v, σ, τ ) defined above. For
each (2n, 2n, n)-chunk v in V(n), there are a table of

d(n) = c × | PT(v(#)) | × (c × | PT(v(#)) | + 5) = O(n2)
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chunk probabilities, where fo any S, | S | denotes the num-
ber of elements of S. Fix some ordering of the pairs (σ, τ ) of
starting and stopping conditions and let p(v) be the vector of
these d(n) probabilities according to this ordering. By using
the counting argument and reduction to absurdity, we can de-
rive the following lemma. □

Lemma 3.2. Let L2 = {x ∈ {0, 1}(3)| l3(x) = 1& (x is of the
form 0n1n for some n ≥ 1) }. Then, L2 ∈ 3-PFA — 3-AFA.

Proof: It is showed the L2 is recognized by a two-way proba-
bilistic finite automaton with error probability ϵ for any ϵ < 1

2

[1, 3]. On the other hand, it is showed that alternating finite
automata accept only regular sets. Thus L2 ∈ L[3-PFA —
3-AFA] by using the same technique. □

From Lemmas 3.1 and 3.2, we have the following theo-
rem.

Theorem 3.1. 3-PFA is incomparable with 3-AFA.

4 CONCLUSION
It was introduced three-dimensional probabilistic finite

automata 3-PFAc’s and shown their some properties in this
paper. We conclude this paper by giving the following open
problems.

(1) Let 3-PFAc (resp. 3-AFAc) be the class of sets of cu-
bic tapes recognized by 3-PFAc’s with error probability
less than 1

2 (resp., accepted by 3-AFAc’s). Is 3-PFAc

incomparable with 3-AFAc ?

(2) Let Tc be all the three-dimensional connected tapes. Is
Tc recognized by 3-PFAc’s ?

(3) It will be interesting to investigate the properties of var-
ious three-dimensional probabilistic Turing machines.

(4) It will be also interesting to deal with the closure prop-
erties of 3-PFAc’s.
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