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Abstract: A hierarchical memetic algorithm (MA) is proposed for the path planning of swarm robots. The proposed algorithm 

consists of a global path planner (GPP) and a local motion planner (LMP). The GPP plans a trajectory within the Voronoi 

diagram (VD) of the free space. An MA with a non-random initial population plans a series of configurations along the path 

given by the former stage. The MA locally adjusts the robot positions to search for better fitness along the gradient direction of 

the distance between swarm robots and intermediate goals (IGs). Once the optimal configuration is obtained, the best 

chromosomes are reserved as the initial population for the next generation. Since the proposed MA has a non-random initial 
population and local searching, it is more efficient and the planned path is faster than the traditional genetic algorithm (GA).   
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1 INTRODUCTION 

In recent years, an increasing number of multi-robot 

systems have been proposed. Swarm robotics [1][2][3] is an 

approach for coordinating multi-robot systems. The swarm 

shares information about the environment and individual 

members interact with each other. Cooperative behavior 

may be used to complete a task. Most studies on robot 

swarm cooperation have focused on formation control, 

which refers to the task of controlling a group of mobile 

robots to follow a predefined path or trajectory while 

maintaining the desired formation pattern. Numerous 

methods have been proposed for formation control, which 

can be roughly categorized into four basic approaches, 

namely behavioral, virtual structure, leader-follower, and 

potential field. 

In virtual structure approaches, the robot swarm is 

considered as a single rigid robot. A rigid geometric 

relationship among group members is maintained [4]. 

Therefore, the path planning of a robot swarm can be 

simplified as the path planning of a rigid robot. The 

advantage of the virtual structure approach is ease of 

implementation. However, the approach has low path 

planning flexibility. 

For behavior-based approaches, several desired 

behaviors, i.e., movement towards the goal, obstacle 

avoidance, collision avoidance, and keeping formation, are 

defined for each robot to create its trajectory. The planning 

of robots can be done concurrently. Since each robot is 

considered individually, it is difficult to guarantee precise 

formation control. 

In leader-follower approaches, the ability of a robot 

depends on its job. In the swarm, one or a few robots act as 

leaders which move along predetermined trajectories and 

other robots in the group follow while maintaining the 

desired relative position with respect to the leader. 

Generally, leader-follower-based robot systems are 

implemented as centralized systems. However, most leader-

follower approaches are not complete algorithms because 

the safe path, that which gives a robot sufficient distance 

from obstacles and other robots is difficult to derive. 

In order to obtain a safe path for swarm robots, the 

present paper proposes a hierarchical path planning 

algorithm. The proposed algorithm consists of a global path 

planner (GPP) and a local motion planner (LMP).  

The rest of this paper is organized as follows. The GPP 

and the LMP of the proposed hierarchical path planning 

algorithm for swarm robots are introduced in Section 2 and 

3, respectively. In Section 4, simulation results are given. 

Finally, conclusions and suggestions for future work are 

given in Section 5. 

2 GLOBAL PATH PLANNING 

Global path planning can be considered as a planning 

problem for a point robot. In Fig. 1(a), a swarm of two 

robots moves to the goal configuration; the planned path is 

close to obstacles [5]. In order to obtain a safe path, a 

Voronoi diagram (VD) is adopted since it is easy to 

implement and has been shown to work well in many cases. 

There are many variants of VD [6][7][8]. In the present 

study, a VD consisting of line segments is considered. A 

VD shows a set of free points which are equidistant to two 

closest obstacles. In [9], the VD was constructed using 
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Voronoi vertices and Voronoi arcs. The Voronoi vertices are 

points equidistant to the closest features of three (or more) 

polygons. The vertices are connected by continuous chains 

of Voronoi arcs. An arc may be equidistant to two closest 

vertices or to two closest obstacle edges or to an obstacle 

vertex and an obstacle edge. 

  
(a)                    (b) 

Fig. 1. (a) Simple path of moving straight from start to goal. 

(b) Voronoi graph for Fig. 1(a). 

As shown in Fig. 1(b), all edges and vertices of 

obstacles are used to construct the VD. The computation 

complexity is proportional to the total number of features of 

obstacles. Only a partial VD is used for global path 

planning for swarm robots. An efficient approach for 

constructing the partial VD is proposed in this paper.  

Unlike approaches which construct the whole Voronoi 

diagram of the free space and then search for the path, the 

proposed scheme constructs a partial VD of the region of 

interest. As shown in Fig. 2(a), the proposed approach 

explores Voronoi vertices constructed from obstacles which 

are near the straight line from start to goal. Then, the 

Voronoi vertices are connected by a Voronoi arc which is 

formed by the nearest edges along the line, as shown in Fig. 

2(b). The approach significantly reduces the computation 

complexity. Since a VD is the medial axis of the free space, 

the global path derived using a VD for swarm robots is the 

safest path. 

  
(a)                   (b) 

Fig. 2. The Voronoi vertices are connected by a Voronoi arc 
which is formed by the nearest edges along the line. 

3 LOCAL MOTION PLANNING  

The global path obtained in the previous stage can be 

sampled as a series of positions, denoted as (q1, q2, q3,…,qn), 

which the center of the swarm robots should follow. These 

positions can be considered as the intermediate goals (IGs). 

For each position qi, the memetic algorithm (MA)-based 

local motion planner plans a set of configurations for the 

robots to which the center of swarm is fixed at point, qi. 

The proposed memetic algorithm is: 

Potential-based Memetic Algorithm 

Begin 

i = 1; /* Initialize the first intermediate goal */ 

t = 0; /* Initialize the evolutionary generations */ 

Randomly generate an initial population Pi ( t ); 

fitness(Pi(t)); 

repeat until (reach the final goal qn) Do 

Pi+1(t)= Pi(t); 

repeat until (reach the intermediate goal qi) 

Do 

select Pi(t+l) from Pi(t); 

crossover(Pi(t+l)); 

mutate (Pi(t+l)); 

fitness(Pi(t+l)); 

apply FT Local Search to Pi(t+l) 

t = t +1; 

end 

i= i +1; 

end 

End 

To apply an MA search for the optimal configurations, 

the coordinates of the robot swarm are encoded into one 

chromosome. The configuration of k robots is defined as 

their displacements, denoted as ((x1, y1), (x2, y2) ,…,(xk, yk)).  

3.1 Initialization 

The population, P1(0), of the first intermediate goal is 

generated randomly. The initial populations, (Pi(0), i >1), of 

other intermediate goals are partially obtained from the last 

generation of the preceding intermediate goal and are 

partially randomly generated. Since these initial populations 

are eugenic and inherit from ancestors, the evolution time is 

reduced.  

3.2 Natural selection 

Natural selection is a genetic operator that chooses a 

chromosome from the current generation’s population for 

inclusion in the next generation’s population. Before 

making it into the next generation’s population, selected 

chromosomes may undergo crossover and/or mutation 

(depending upon the probability of crossover and mutation) 
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in which case the offspring chromosome(s) are actually the 

ones that make it into the next generation’s population.  

The aim of selection is to preserve optimal 

chromosomes and abandon suboptimal ones. In this study, 

the top percent scheme is adopted. The top 10 percent of the 

population is reserved as the next generation’s population 

and the others are selected randomly. 

3.3 Crossover and mutation operators 

Selection alone cannot generate any new chromosomes 

for the population. The reproduction operators, crossover 

and mutation, are used to generate new offspring for the 

next generation. Crossover is performed between two 

selected chromosomes, called parents, by exchanging parts 

of their genomes to form two new chromosomes, called 

offspring. The most popular types of crossover operations 

are one-point, two-point, uniform, and blending. In this 

paper, since the i-th gene of a chromosome represents the 

position of robot i, the crossover operator exchanges 

similarly positioned genes of a pair of chromosomes. 

For the mutation operator, an arbitrary bit in a genetic 

sequence is changed with a probability. The purpose of 

mutation in evolutionary algorithm (EA) is as a genetic 

operator used to maintain genetic diversity from one 

generation of a population of chromosomes to the next 

while attempting to avoid local minima. 

3.4 Fitness function 

Generally, selection is conducted according to the 

fitness of every chromosome, where the fitness evaluation 

of the GA is an objective function for chromosomes.  

The fitness function can be rewritten [10] as: 
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where q
iD  is the distance between robot i and the 

intermediate goal of the swarm center, q. The ρ is a constant 

and Urep(q) is the repulsive potential of swarm robots from 

obstacles. When a configuration collides with obstacles, the 

collision function, fcollide(q), is equal to Vmax, which is a 

penalty; otherwise, it is equal to 1. The potential Urep(q) can 

be calculated analytically as: 
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nearest obstacle. 
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where Q* is the minimum distance from obstacles and η is 

a gain of the repulsive gradient. Disp (i) is the distance 

between robot i and the closest obstacle. For swarm 

cohesion, a robot in the swarm should keep a certain 

distance from the swarm center and not stray far from other 

robots. In the proposed algorithm, a spring function is 

adopted as a repulsive/attractive potential function in the 

fitness function. In (1), Xi
2 is the difference between the 

distance between robot i and the nearest neighbor robot and 

the safe distance which should be kept between robots. 

3.5 Local search of memetic algorithm using gradient 

between swarm robots and IGs 

Conventional genetic algorithms (CGAs) don’t have a 

fine-tuning (FT) process to get closer to optimal solutions. 

Unlike CGAs, an MA is an EA with a local search process 

to refine individuals. In this paper, the local research 

scheme is used to adjust the position of the center of the 

robot swarm moving toward the IG. The top 20 percent of 

chromosomes are reserved for the next generation. The 

chromosomes are fine-tuned before the next evolution. 

Consider the position of the swarm center of a chromosome 

as ( , )c c c

x yR R R  and the current intermediate goal 

as ( , )i ix iyIG IG IG . The best movement direction is 

defined as: 
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Therefore, the fine-tuning procedure of the genes of the 

chromosomes is defined as: 
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4 SIMULATION RESULTS 

The proposed algorithm consists of the GPP and the 

LMP. The former was implemented using a modified 

Voronoi algorithm. The population was 100 and the 

maximum number of generations was set to 120. The 

probabilities of mutation and crossover were both 10%. The 

safe distances, l and Q*, were set to 10 pixels and 2 pixels, 

respectively. The range of the genes was 30 to -30. 
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4.1 Swarm robot path planning by genetic algorithm 

and memetic algorithm 

Case 1 

The 3-robot swarm is shown in Fig. 3(a). There are 5 

IGs and 3 obstacles in this case. The simulation took 8.609 

seconds to plan a 10-configuration collision-free path. A 

similar simulation of the CGA is shown in Fig. 3(b). The 

CGA took 10.11 seconds to plan a 12-configuration path. 

The proposed algorithm is faster and more efficient. 

 

  
(a)                      (b) 

Fig. 3. Three trajectories for 3-robot swarm example. 
Motion planning obtained using (a) MA and (b) CGA. 

 

     
(a)                     (b) 

Fig. 4. Five trajectories for 5-robot swarm example. Motion 

planning obtained using (a) MA and (b) CGA. 

 

Case 2 

The simulation of a 5-robot swarm is shown in Fig. 4(a). 

The planned path is smooth. There are 4 IGs and 4 

obstacles in this case. The simulation took 56.094 seconds 

to plan a 39-configuration collision-free path. A similar 

simulation of the CGA is shown in Fig. 4(b). The 

simulation took 88.563 seconds to plan a 59-configuration 

path.  

5 CONCLUSION 

The proposed MA has a non-random initial population 

and fine-tuning based local searching, which make it more 

efficient and faster than the traditional CGA. The proposed 

hierarchical approach avoids becoming trapped in local 

minima. The path planning problem for swarm robots was 

considered for 2-D workspaces. The proposed algorithm 

can be extended to 3-D workspaces without significant 

modification. For example, the gene of a robot can be 

represented as (x, y, z). In future works, we will focus on 

smoothing the planned paths to reduce redundant 

movements. With this modification, the proposed algorithm 

should be more efficient. 
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