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Abstract: The Pennes’ bio-heat conduction equation is common used to simulate temperature distribution for bio-heat transfer 
problems, it adopted the classical Fourier heat conduction law that is obviously incompatible with physical reality when 
research on microscopic heat transfer, low-pressure gases, cryogenic engineering, etc. Applying the concept of finite heat 
propagation speed, a thermal wave model of bi-heat transfer has developed. In order to analyze the thermal wave effect on 
temperature distributions, the different boundary heating conditions are considered with thermal wave model of bi-heat transfer 
and also compare to the Pennes’. The differential transform method combined with the finite difference scheme is proposed to 
simulate the temperature distributions. From results show it takes a period of time for the surface heating to propagate to a 
desired point inside the living tissue by the effect of thermal wave. 
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1. INTRODUCTION 

Temperature predictions for living tissues have attracted 
a lot of interesting in the processes of hyperthermia, 
thermal diagnostics, cryosurgery, thermal comfort analysis, 
and thermal parameter analysis. There were many models 
have been developed for describing bio-heat transfer 
behavior [1]. Among these models, the well known Pennes’ 
model is the most commonly adopted [2]. It used the classic 
Fourier’s law for its conduction term and was given as 
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where κ  is conductivity. The thermal signal propagates in 
infinite velocity in Eq. (1) that is obviously incompatible 
with physical reality when studies the processes of 
microscopic heat transfer, low-pressure gases, cryogenic 
engineering, etc. Thus, the concept of finite heat 
propagation wave velocity was proposed to apply for the 
bio-heat transfer processes [3-4]. Vernotte and Cattaneo [5] 
proposed a modified unsteady heat condition equation with 
the thermal relaxation time and was given as 
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here 2/Vατ = is defined as the thermal relaxation time, 
and α  is the thermal diffusivity, V is denoted as the heat 
propagation velocity in the medium. 

In homogeneous substances, τ  is in the range of 10-8 ~ 
10-10s as for gases, and 10-8 ~ 10-14s for liquids and 
dielectric solids [6]. The time of heating process is much 

longer than the thermal relaxation time scale in 
homogeneous substances, so the phenomenon of heat wave 
is relatively more difficult to observe. In non-homogeneous 
materials such as living tissues, τ  is the characteristic 
time that needs to take time to accumulate the thermal 
energy in order to transfer to the nearest element. Kaminski 
[7] reported the value of τ is 20~30 s in meat product. Liu 
et al. [8] used the thermal wave model of bio-heat transfer 
(TWMBT) to analysis the thermal signal wave of bio-heat 
transfer. Liu [9] performed the Laplace transform method to 
investigate the thermal propagation behaviors. Liu and Lin 
[10] investigated physiological parameters by the hybrid 
numerical scheme. It is difficult to obtain the fundamental 
solution of the thermal propagation wave model of bio-heat 
transfer for living tissue [11]. In this article, a differential 
transform method is proposed to predict temperature 
distributions for living tissues with different boundary 
heating conditions. The effects of thermal wave on 
temperature distribution are also investigated. 

2. THE DIFFERENTIAL TRANSFORMATION 
METHOD 

Zhou [12] proposed the concept of the differential 
transform and can be summarized below. 
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where k belongs to a set of non-negative integer denoted as 
K domain. ( )0;tkX  is the differential transformation of 
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( )tx  at 0tt = , M(k) ( 0)( ≠kM ) is called the weighting 
factor and q(t) ( 0)( ≠tq )is a kernel corresponding to x(t). 
Thus, if q(t)x(t) can be expressed in terms as Taylor’s series, 
then x(t) can be presented by using the differential inverse 
transformation of ( )0;tkX  as 
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If ( ) !/ kHkM k=  and 1)( =tq , then Eq. (3) and (4) 
become 
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3. BIOHEAT TRANSFER PROBLEMS 

The Pennes’ bio-heat transfer equation is described as 
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where, ρ  C , and T  denote the density, specific heat, 
and temperature of living tissue, bC is the specific heat of 
blood, bW blood perfusion rate, mq and rq  are the heat 
generation from metabolism and the spatial heat source 
respectively, bT is the artery temperature. Liu et al. [13] 
introduced a general model of thermal wave form of the 
bio-heat transfer in living tissue from Eq. (2) and (7) as 
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Equation (8) is a general form of TWMBT in living 
tissue. When heat mainly propagates in the perpendicular 
direction to the living tissue surface, one-dimensional heat 
transfer can be a good approximation. With constant 
thermal properties, =mq constant, and 0=rq , Eq. (8) can 
be expressed as 
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By assuming )0,(xTi  i s  the initial steady state 
temperature, then Eq. (9) is turned into a new form as  
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Define a transformation of )0,(),(),( xTtxTtx i−=θ and 
combine Eq. (9) and (10), the final result becomes 
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By taking differential transformation of Eq. (11), then 
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where ),()( txUkU =  is the differential transformation 
function at ),( txθ . By dividing the coordinate of x into 
N  equal internals  a n d  t ak i n g  the finite difference 
approximation to Eq. (12) 
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3. NUMERICAL SIMULATION 

When the surface of living tissue is heated by different 
boundary heating conditions, the bio-heat conduction 
equation and relative conditions are discussed. 

3.1. Case 1：Constant surface temperature heating  
The skin surface is heated for constant temperature and 

the temperature distributions have simulated. 
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Assume there is no heat flux at x=L [8], then the initial 
and boundary conditions are described as 
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The differential transformation of Eq. (15)-(18) are 
0)0( =iU  (19) 
0)1( =iU  (20) 
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The differential transformation equation from Eq. (14) 
can be resulted in tow situations. 

For 0=τ  
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For 0≠τ  
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3.2. Case 2：Constant surface flux heating 

For a constant heat flux heat at the living surface, the 
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corresponding boundary conditions typically can be 
described as 
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Where st  is defined as the duration of heating period 
and )(tq  denotes the heat flux that is time variable. 
Considering the heating time is short then the heat flux is 
approximately assumed as a constant, 0q . In the practices 
the heat flux is 83.2kw/m2 as for the flash fire on the 
human skin surface.  

3.3 Case 3：Constant temperature pulse surface heating 
In the cases of eye surgery by using laser pulse or skin 

subjects to hot plate for a short period of time, the boundary 
conditions are expressed as 
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4. RESULT AND DISCUSSION 

The thermal property for homogeneous tissue are taken 
as 3/1000 mkg=ρ , CkgJCC b °== /4200 ,

3/5.0 mkgWb = , CTb °= 5.32 , and mW /2.0=κ  [5]. As 
shows in Fig. 1, the computation domain is taken as 
L=0.01208m and the value of 0θ  is specified as 12℃ [5] 
and temperature distributions were analytically estimated at 
x=0.00208m inside the body. 

 
Fig. 1. The physical model 

4.1. Case 1：Constant surface temperature heating  

In Fig. 2, the temperature distributions predicted from 
Pennes’ and TWMBT equation were different. As 0=τ , 
the Pennes’ bio-heat equation is used to characterize the 
thermal conduction, the thermal gradient has no jump 
discontinuity because of the infinite speed of thermal wave 

and the thermal signal can arrive the positions 
instantaneously. For 0≠τ , the influence of thermal 
relaxation time can result in a finite thermal wave 
propagation velocity and a travel time for thermal heat to 
distribute. The time for thermal heat to arrive at 
x=0.00208m is evaluated by using τα //Lt = . For 

20=τ s and 30=τ s, the thermal wave reach x=0.00208m 
in )(627.42)2042001000/(2.0/00208.0 st =××=  and 

)(21.52)3042001000/(2.0/00208.0 st =××= , respectively. 
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Fig. 2. Temperature distribution during constant surface 

temperature heating at x=0.00208m 

4.2. Case 2：Constant surface flux heating 
When there is a constant heat flux on the living skin 

surface for a period of heating time, as shows in Fig. 3. A 
substantial deviation was found between temperature 
predictions from the Pennes’ and TWMBT equation. The 
temperature distributions predicted by the Pennes’ equation 
increase at the initial then quickly decrease when the 
surface heat flux becomes zero. As in TWMBT equation, a 
period of time is needed for the thermal signal to travel 
from the surface to the particular position, the temperature 
distribution increase with a slope for the period of heating 
time then decrease. In Fig. 4, the different heat time were 
carried out to analyze the effect of thermal wave. The 
longer the heating time is the higher temperature is. 
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Fig. 3. Temperature distribution for st =3s during 
constant surface flux heating at x=0.00208m 
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Fig. 4. Temperature distribution for various st during 

constant surface flux heating at x=0.00208m 

4.3 Case 3：Constant temperature pulse surface heating 
When the living tissues heat by the constant temperature 

pulse heating, such as eye surgery by laser irradiation or a 
flash fire on skin. As shows in Fig. 5, the temperature 
distributions predict by Pennes’ and TWMBT equations for 
3s, 5s, and 10s heating time. There is a travelling time for 
the thermal wave propagates from the heating living tissue 
surface to the particular and the temperature increase for the 
period of temperature pulse heating time. The longer 
heating time is, the higher temperature is. As for 0=τ , the 
temperature increases at the period of temperature pulse 
heating time from begin, then gradually decreases at the 
end of heating. 
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Fig. 5. Temperature distribution for various st , 

C°=120θ  during constant temperature 
 surface flux heating at x=0.00208m 

 

5.CONCLUSION 

The paper presents the effect of thermal wave in the 
living tissues for different surface heating problems. We 
simulate the bio-heat conduction problems with different 
values of the thermal relaxation time and also compares the 
results simulated by Pennes’ and TWMBT equations. The 

results show that the heat wave speed under the effects of 
various thermal relaxation time and heat transfer wave 
propagation, can be expressed as τρκτα CV // ==  
and the travelling time also be calculated.  In the non-
homogeneous substance, the thermal wave propagates in a 
finite speed and cause a delay time to heat transfer compare 
with the temperature predicted by the Pennes’ equation. 
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