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Abstract: We consider the problem of multiple target tracking in the presence of clutter (false alarm) measurements. To improve
the performance of the Rao-Blackwellized particle filter (RBPF) data association algorithms, some simple but effective strategies
are implemented. We first present a sequential likelihood method, i.e., all measurements are used to update the particles more than
one time in each time step. It is observed that the tracking performance of the algorithm is not severely loss with fewer particles.
We then present a simple gating technique to reduce the validated measurements to a feasible level. It is worth mentioning that the
association probabilities are not calculated by grouping targets into clusters as the joint probabilistic data association (JPDA), but
only reserve the validated measurements in the joint validation region (gate) and ignore the measurements outside. Simulations
are also presented to compare the performance of the proposed algorithms.
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1 INTRODUCTION
In multi-target tracking, data association remains a chal-

lenge in cluttered environment [1]-[3]. As an important en-
hancement of the particle filter, Rao-blackwellized particle
filter (RBPF) has also been used to solve this problem in re-
cent years [4]-[6]. The idea of this approach is that the joint
data association and target tracking problem can be solved by
partly sequential Monte Carlo method instead of pure particle
filter sampling [7], [8], so that the needed number of particles
may be reduced to a low order of magnitude.

However, in the application of the RBPF multi-target
tracking algorithms, we found that the success rate of data
association could not be improved only by increasing the
number of particles. To improve the ability of the algorithms
but not increase the time cost, we present in this paper some
simple but effective methods. The main contribution of this
paper has two folders, one is the development of a sequential
likelihood method in RBPF multi-target tracking algorithms,
the other is the application of the simple gating technique,
which restrict data association into validation regions.

The rest of this paper is organized as follows. In Section
2, we give a brief introduction of the RBPF data associa-
tion algorithms. The sequential likelihood and simple gating
methods are presented in Section 3. Finally, simulation re-
sults and conclusions are given in Section 4 and Section 5,
respectively.

2 RAO-BLACKWELLIZED PARTICLE FILTER

FOR MULTIPLE TARGET TRACKING
In this section we will give a brief introduction of the

RBPF algorithms for multi-target tracking. The basic RBPF
model is assumed to be time-varying system as follows:

x2k = Fk−1x
2
k−1 + wk−1 (1)

zk = Hkx
2
k + vk (2)

where, wk−1 and vk are zero mean Gaussian random vectors,
Fk−1 and Hk are matrices with compatible dimensions. This
type of system can be termed conditionally linear-Gaussian
for the set of variables x1k, a RBPF algorithm can be applied
to estimate the state xk = {x1k;x2k}. The RBPF can be seen
as a form of constrained PF (Particle Filter) applicable to a
subclass of state-space models. By choosing Np particles at
time step k, a generic RBPF algorithm, applicable to prob-
lems of the form (1) and (2) is presented as follows [9].
Step 1. For every i ∈ {1, 2, ..., Np} :

• Draw x
1(i)
k ∼ q(x1k|x

1(i)
1:k−1, z1:k)

• Set x1(i)1:k = {x1(i)k ;x
1(i)
1:k−1}

• Compute the normalized weights:

w̃
(i)
k ∝ w

(i)
k−1

p(zk|x1(i)

1:k
,z1:k−1)p(x
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k
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Step 2. For every i ∈ {1, 2, ..., Np} :

• Update p(x2k|x
1(i)
1:k , z1:k) using p(x2k−1|x

1(i)
1:k−1, z1:k−1),

x
1(i)
k , x1(i)k−1, and zk.

Step 3. Resample the particles if needed.
In [5] it has been shown that the RBPF based data asso-

ciation algorithm can be obtained directly from the RBPF
framework when the latent values x1k are defined to contain
the data association event indicators ck,

x1k = ck (3)

The advantage of RBPF is that only the index of data asso-
ciation needs to be sampled from the importance distribution
so that the required number of particles can be greatly re-
duced. Nevertheless, it seems that the number of particles
should still be large enough in dense clutter environment, be-
cause as data association becomes more difficult the impor-
tance distribution will be more complex. In experiments, it
is found that only a few particles had unnegligible weights
after a certain number of recursive steps, that is to say most
of the particles are degenerated prematurely and we cannot
improve the performance only by increasing the number of
particles. Of course, the resampling strategy can be imple-
mented when a significant degeneracy is observed, but the
resampling threshold cannot be calculated analytically. Typ-
ically, the values of the threshold are selected ad hoc and
degeneracy may possibly happen.

3 PROPOSED ALGORITHMS
In the following discussions, we will show two simple but

effective methods to improve the performance of the RBPF
algorithm in the application of multi-target tracking.

3.1 Sequential likelihood function based algorithms
we first present a sequential likelihood function based

method to resolve the particle degeneracy problems, i.e.,
all validated measurements are used to update the state
of particles more than one time in each time step. The
proposed algorithm is derived based on an existing RBPF
data association algorithm termed Rao-Blackwellized Monte
Carlo data association (RBMCDA), in which the optimal
importance distribution is used as the association sampling
function. The main procedure of the proposed sequential
likelihood technique based RBMCDA data association
algorithm (S-RBMCDA) is presented as follows:
i. Calculation of the predicted measurement ẑj,k and the
related innovation Sj,k

ẑj,k = Hj,kx̂j,k|k−1, Sj,k = Hj,kPj,k|k−1H
T
j,k +Rj,k (4)

where {
x̂j,k|k−1 =

∑Np
i=1 w

(i)x̂
(i)
j,k|k−1,

Pj,k|k−1 =
∑Np
i=1 w

(i)P
(i)
j,k|k−1.

(5)

ii. Calculation of the association priors p(c(i)k |c
(i)
k−m:k−1)

according to the Markov chain method introduced in [5].
iii. Calculation of the measurement likelihood for each data
association hypothesis, j = 1, · · · , T .

p(zk|ck = j, c
(i)
1:k−1, z1:k−1) = N (zk|Ẑ(i)

j,k, S
(i)
j,k) (6)

and
p(zk|ck = 0, c

(i)
1:k−1, z1:k−1) = V −1, (7)

where V is volume of the detection region.
iv. Calculation of the posterior distribution of c(i)k

p(c
(i)
k |c

(i)
1:k−1, z1:k) (8)

= p(zk|c(i)k , c
(i)
1:k−1, z1:k−1)p(c

(i)
k |c

(i)
k−m:k−1),

v. Sampling a new association c(i)k = j

vi. Calculation of the new weights for each particle

w
(i)
k ∝ w

(i)
k−1

p(zk|c(i)k , c
(i)
1:k−1, z1:k−1)p(c

(i)
k |c

(i)
k−m:k−1)

p(c
(i)
k |c

(i)
1:k−1, z1:k)

(9)
vii. Resampling the particles if needed.

In this procedure the target state priors can be represented
as a weighted importance samples set

p(xj,0) =
∑Np

i=1
w

(i)
0 N (xj,0|x(i)j,0, P

(i)
j,0 ) (10)

whereNp is the number of particles. The dynamics and mea-
surements for target j (j=1, · · · , T ) are assumed to be linear
Gaussian

p(xj,k|xj,k−1) = N (xj,k|Fj,k−1 xj,k−1, Qj,k−1) (11)

p(zk|xj,k, ck = j) = N (zk|Hj,kxj,k, Rj,k). (12)

Note that this algorithm is generally the same as the generic
RBMCDA [4], [5] except the sequential likelihood procedure
which is used to improve the ability of the data association. It
just need to repeat from the procedure ii. to v. several times.

3.2 Simple gating
In the RBMCDA algorithms, gating techniques for se-

lecting validated measurements are not introduced. For the
known number of target version of the RBMCDA algorithm,
it always deals with all measurements in the entire detec-
tion region, which is the same as the unknown number of
target version. Obviously, too many clutter originated mea-
surements are considered in data association and high com-
putational complexity arises.

To overcome this difficulty, we then present a simple gat-
ing technique which can be incorporated into the known
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Fig. 1: Example of the measurement validation. (a):Two tar-
gets tracking situation. (b): The equivalence simple gate.

number of target version of the RBMCDA algorithm for re-
ducing the validated measurements to a feasible level. It is
worth mentioning that the association probabilities are not
calculated by grouping targets into clusters as the joint prob-
abilistic data association (JPDA), but only reserve the vali-
dated measurements in the joint validation region (gate) and
ignore the measurements outside. Following [10], the valida-
tion region is the elliptical region

Γ(k, γ) = {z : [z− ẑ(k|k−1)]
′
S(k)−1[z− ẑ(k|k−1)] ≤ γ}

(13)
where γ is the gate threshold corresponding to the gate prob-
ability Pg , which is the probability that the gate contains the
true measurement if detected, and S(k) is the covariance of
the innovation corresponding to the predicted measurement.

In Fig. 1, the target originated measurements “o” and clut-
ter originated measurements “×” are shown. A measurement
is validated for target j if it falls inside the elliptical region
centered at Ẑj (the predicted measurement of target j), and
only the validated measurements for a particular target are
candidates to be association with that target. The simple gat-
ing technique can be easily incorporated into the framework
of the algorithm in Section 3.1. In this gating based algorithm
(G-RBMCDA), only the validated measurements are used to
enumerate the data associations.

It should be noted that, the introduce simple gating tech-
nique can not be directly used in the sequential likelihood
based algorithms. In fact, we found that the combinational
algorithm may possibly be failed in experiments. An intu-
itive explanation of this problem is that the fixed validation
regions should be changed even in one time step.

4 SIMULATIONS
The performance of S-RBMCDA and G-RBMCDA algo-

rithms are compared with generic RBMCDA in this section.
We model the two targets with near constant velocity model
in 2-dimensional Cartesian coordinates and the discrete-time
dynamic and measurement model of target j has the follow-

ing form:
xj,k = Fxj,k−1 + wk−1 (14)

zj,k = Hxj,k + vk (15)

where

F =


1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

 ,H =

(
1 0 0 0

0 1 0 0

)
(16)

wk−1 and vk are zero mean Gaussian process noise. The Pro-
cess noise variance and the variance in the measurements are
selected as 0.1. The sample interval T = 0.1 and the cor-
rect measurements returns with a know detection probability
Pd = 0.99. The clutter are modeled as independent and iden-
tically distributed with uniform spatial distribution in a detec-
tion region of the coordinate plane [0, 25]× [0, 25], and the
number of clutter measurements obeys a Poisson distribution
with the Poisson random number λ. The gating region used
is Pg = 0.9997 with γ = 16. The number of particles used
in the three algorithms: 50 (RBMCDA), 20 (S-RBMCDA,
repeat 2 times), 50 (G-RBMCDA). in All simulations are run
on a PC with a 2.8-GHz Intel processor.

Fig. 2 and Fig. 3 show the position RMSE for tracking
two crossing targets. The clutter rate λ = 10 and the experi-
ments are repeated 100 times. It is observed that the RMSE
of the S-RBMCDA algorithm is lower than the generic RBM-
CDA even with fewer particles. In fact, G-RBMCDA can fur-
ther improve the ability of none-validation-region algorithms
(RBMCDA and S-RBMCDA) mainly because only the val-
idated measurements are considered in data association and
the clutter measurements outside the validation regions are
abandoned reasonably.

Fig. 4 gives the running time as a function of Np, we can
see that the S-RBMCDA and G-RBMCDA algorithms are
computationally efficient than the generic RBMCDA as ex-
pected. The G-RBMCDA is the most efficient algorithms,
but it can only be implemented in the known number version
of target tracking. For each method we run the algorithms
with the increasing number of particles and repeat each ex-
periment 50 times to get an average results.

5 CONCLUSION
In this paper, the improved RBPF algorithms have been

presented for multi-target tracking in clutter. The proposed
sequential likelihood method can be used to improve the per-
formance of the generic algorithm with less particles. If
the number of targets is fixed, the simple gating based al-
gorithm only consider validation regions where the true mea-
surements are concentrated with high probability. The com-
putational time is greatly decreased for less clutter needs to
be considered. Moreover, the gating based algorithms can
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Fig. 2: Comparison of the average position estimation errors
(RMSE) of target 1.
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Fig. 3: Comparison of the average position estimation errors
(RMSE) of target 2.
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Fig. 4: Comparison of the average running time of the three
algorithms.

improve the tracking ability of the algorithm without the dis-
turbance of clutter outside the validation region. Future work
should be done to intensively study the sequential likelihood
method for the general particle filtering algorithms.
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