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Abstract: In this paper, we study the problem of robust exponential stabilization for uncertain linear systems with interval
time-varying delay. We first rewrite the original system into a new form, then by dividing the delay intervals into two equal
subintervals, we construct the Lyapunov-Krasovskii functional with augmented vectors. By appropriate enlarging some terms
that appeared in the derivative of the Lyapunov-Krasovskii functional and using a new lower bounds lemma, delay-dependent
robust exponential stabilization criteria are obtained based on Lyapunov stability theory and free weighting matrix technic. For
getting the design of controller, we fix some formations of the introduced free-weighting matrices with given parameters, thus the
obtained criteria are in terms of Linear Matrix Inequalities(LMIs). Finally numerical examples are given to show the effectiveness
and less conservativeness of the proposed method.
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1 INTRODUCTION

Interval time-varying delay system is a type of time-delay
system in which the lower bound of delay needn’t to be 0.
Since the existence of time delay can make system instable
and degrade its performance, much effort has been done to
study the stability and stabilization problem for such sys-
tems in recent years. Wang [1] research the exponential sta-
bilization problem for interval time-delay system by using
free-weighting matrix method, but in the derivative of Lya-
punov functional there are some terms are enlarged improp-
erly, which will lead conservative results. Botmart [2] get
criteria to design robust exponential stabilization controller
for such system by assuming the controller have some for-
mation and using convex combination method, which get less
conservative results compared to some existing papers.

When considering this problem, we find that by choosing
specific Lyapunov functional and appropriate enlarging some
terms appeared in its derivative, less conservative stabiliza-
tion criteria can be obtained. Motivated by the above ide-
als, we research the problem of delay-dependent robust ex-
ponential stabilization for uncertain time-delay systems with
interval time-varying delay in this paper. We divide the de-
lay intervals into two subintervals, and construct the corre-
sponding Lyapunov functional by using the augmented vec-
tors. Based on Lyapunov stability theory and free weighting
matrix methods, delay-dependent robust stabilization criteria

are obtained, and the controller can be obtained by solving
LMIs. Finally, several numerical examples are given to show
the effectiveness of the obtained criteria.

2 PROBLEM STATEMENT
Consider the following uncertain linear system with time-

varying delay

ẋ(t) = (A+∆A(t))x(t) + (Ad +∆Ad(t))x(t− h(t))

+ (B +∆B(t))u(t),

x(t) = ϕ(t), t ∈ [−h2, 0], (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the con-
trol input, the initial condition ϕ(t) is a continuously differ-
entiable vector-valued function, A, Ad, and B are constant
system matrices of appropriate dimensions, ∆A(t), ∆Ad(t)
and ∆B(t) are unknown real matrices with appropriate di-
mensions representing the system’s time-varying parameter
uncertainties and satisfy

[∆A∆Ad ∆B] = [E1F1(t)G1 E2F2(t)G2 E3F3(t)G3] (2)

with Ei, Gi (i = 1, 2, 3) are known real constant matrices.
Fi(t) is the time-varying nonlinear function which satisfies

FTi (t)Fi(t) ≤ I for i = 1, 2, 3, ∀t ≥ 0. (3)

h(t) is a continuous time-varying function satisfying

0 ≤ h1 ≤ h(t) ≤ h2, (4)
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ḣ(t) ≤ µ, (5)

where h1 < h2, and µ ≥ 0 are constants.

Definition 1 [3]. The original state x∗ = 0 of time-delay
system (1) with uncertainty and interval time-varying delay
satisfying (2-5) is said to be robustly exponentially stabiliz-
able if for given constants σ ≥ 1 and ρ > 0, there exists state
feedback controller such that the solution x(t) to the result-
ing closed-loop of system (1) satisfies

∥x(t)∥ ≤ σ∥x(t0)∥θe−ρ(t−t0), ∀ t ≥ t0, (6)

where ∥x(t)∥θ is defined by

∥x(t)∥θ = sup0≤θ≤h2
{x(t− θ), ẋ(t− θ)},

and ρ is called the exponential convergence rate.
The purpose of this paper is to study the robust exponen-

tial stabilization problem for system (1) with uncertainty and
interval time-varying delay satisfying (2-5) under the state
feedback controller

u(t) = Kx(t). (7)

Lemma 1 [4]. For scalars α, β ∈ [0, 1], α+ β = 1, and vec-
tors η1, η2 satisfy η1 = 0 with α = 0 and η2 = 0 with β = 0,
matrices P > 0, Q > 0, there exists matrix T , satisfies[

P T

TT Q

]
≥ 0,

such that the following inequality holds

1

α
ηT1 Pη1 +

1

β
ηT2 Qη2 ≥

[
η1
η2

]T [
P T

TT Q

] [
η1
η2

]
.

3 MAIN RESULTS
We rewrite the closed loop of system (1) as the following

form

ẋ(t) = Āx(t)+Adx(t−h(t))+Ēf(t, x), (8)

with

Ā = A+BK, Ē =
[
E1 E2 E3

]
, f(t, x) = F̄ (t)Ḡ(x),

F̄ (t) = diag {F1(t), F2(t), F3(t)},

Ḡ(x) =
[
xT (t)GT1 xT (t− h(t))GT2 xT (t)KTGT3

]T
.

Firstly we divide the delay intervals [0, h1] and [h1, h2]

into two subintervals separately, and denote δ1 = h1

2 ,

δ2 = h12

2 , δ = h1 + δ2, ζ1(t) =
[
xT (t) xT (t− δ1)

]T
,

ζ2(t) =
[
xT (t) xT (t− δ2)

]T
. Then corresponding

to the divisions and augmented vectors, we construct the
following Lyapunov-Krasovskii functional

V (xt) = V1(xt)+V2(xt)+V3(xt), (9)

where

V1(xt) = xT (t)Px(t),

V2(xt) =
∫ t
t−h(t) x

T (s)eα(s−t)Qx(s)ds

+
∫ t
t−δ1 ζ

T
1 (s)e

α(s−t)Q1ζ1(s)ds,

+
∫ t−h1

t−δ ζT2 (s)e
α(s−t)Q2ζ2(s)ds,

V3(xt) = δ1
∫ 0

−δ1

∫ t
t+θ

ẋT (s)eα(s−t)R1ẋ(s)dsdθ

+ δ1
∫ −δ1
−h1

∫ t
t+θ

ẋT (s)eα(s−t)R2ẋ(s)dsdθ

+ δ2
∫ −h1

−δ
∫ t
t+θ

ẋT (s)eα(s−t)S1ẋ(s)dsdθ

+ δ2
∫ −δ
−h2

∫ t
t+θ

ẋT (s)eα(s−t)S2ẋ(s)dsdθ

with P,Q,Qi, Ri and Si are symmetric positive matrices.
Denote ξ(t) =

[
xT (t) xT (t− δ1) xT (t− h1)

xT (t− δ) xT (t− h2) xT (t− h(t)) ẋT (t) fT (t, x)
]T

,
and ei (i = 1, · · · , 8) are block entry matrices such that
eiξ(t) = ξi(t).

Theorem 1. For given scalars α > 0, 0 ≤ h1 < h2, µ ≥ 0,

γ1 and γ2, the closed-loop system of (1) with uncertainty and
time-delay satisfied (2-5) is robust exponential stabilization
if there exist symmetric positive matrices P̄ , Q̄, Q̄i, R̄i, S̄i,
matrices T̄i (i = 1, 2), N̄ and W , positive scalars ϵ̄ such
that the following LMIs (10-11) hold for i = 1, 2, then the
solution x(t) of the closed-loop of system (1) satisfies (6)
with convergence rate ρ = α

2 and the robust stabilization
controller is K =WN̄−1.[

Π̄(i) ϵ̄G̃

ϵ̄G̃T −ϵ̄I

]
< 0, (10)

[
S̄i T̄i
T̄Ti S̄i

]
≥ 0, (11)

where

Π̄(i) = Π̄0 + Π̄i + Π̄e,

Π̄0 = eT1 P̄ e7 + eT7 P̄ e1 + αeT1 P̄ e1 + eT1 Q̄e1 + eT6 ψ(µ)Q̄e6

+ eTa Q̄1ea − eTb e−αδ1Q̄1eb + eTc e−αh1Q̄2ec − ϵ̄eT8 e8
− eTd e−αδQ̄2ed +

∑2
i=1 e

T
7 (δ

2
1R̄i + δ22S̄i)e7

− (e1 − e2)T e−αδ1R̄1(e1 − e2)

− (e2 − e3)T e−αh1R̄2(e2 − e3),

Π̄1 = −(e4 − e5)T e−αh2 S̄2(e4 − e5)

− e−αδ
[
e3 − e6
e6 − e4

]T [
S̄1 T̄1
T̄T1 S̄1

] [
e3 − e6
e6 − e4

]
,

Π̄2 = −(e3 − e4)T e−αδS̄1(e3 − e4)

− e−αh2

[
e4 − e6
e6 − e5

]T [
S̄2 T̄2
T̄T2 S̄2

] [
e4 − e6
e6 − e5

]
,

Π̄e = Ω̄ + Ω̄T ,

Ω̄ = (e1 + γ1e6 + γ2e7)
T (−N̄e7 +AN̄e1 +BWe1
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+AdN̄e6 + ϵ̄Ēe8),

ψ(µ) =

{
(µ− 1)e−αh1 (µ ≥ 1)

(µ− 1)e−αh2 (µ < 1),

ea = [eT1 , e
T
2 ]
T , eb = [eT2 , e

T
3 ]
T ,

ec = [eT3 , e
T
4 ]
T , ed = [eT4 , e

T
5 ]
T ,

G̃ = Ḡ1N̄
−1e1 + Ḡ2N̄

−1e6 + Ḡ3We1,

Ḡ1 =
[
GT1 0 0

]T
, Ḡ2 =

[
0 GT2 0

]T
,

Ḡ3 =
[
0 0 GT3

]T
, σ =

√
n̄
m̄ , N̄1 = diag{N̄ , N̄},

m̄ = λmin(N̄
−1P̄ N̄−T ),

n̄ = λmax(N̄
−1P̄ N̄−T ) + ( 1−e−αh2

α )λmax(N̄
−1Q̄N̄−T )

+ ( 1−e−αδ1

α )λmax(2N̄1
−1
Q̄1N̄1

−T
)

+ (e−αh1−e−αδ

α )λmax(2N̄1
−1
Q̄2N̄1

−T
)

+ δ1(
e−αδ1+αδ1−1

α2 )λmax(N̄
−1R̄1N̄

−T )

+ δ1(
e−αh1+αh1−e−αδ1−αδ1

α2 )λmax(N̄
−1R̄2N̄

−T )

+ δ2(
e−αδ+αδ−e−αh1−αh1

α2 )λmax(N̄
−1S̄1N̄

−T )

+ δ2(
e−αh2+αh2−e−αδ−αδ

α2 )λmax(N̄
−1S̄2N̄

−T ).

Proof. Taking the time derivative of Lyapunov functional (9)
along the trajectory of closed-loop of system (1), we have

V̇1(xt) = 2xT (t)Pẋ(t) + αxT (t)Px(t)− αV1(xt),

V̇2(xt) = xT (t)Qx(t) + ζT1 (t)Q1ζ1(t)− αV2(xt)

− (1− ḣ(t))xT (t− h(t))e−αh(t)Qx(t− h(t))

− ζT1 (t− δ1)e−αδ1Q1ζ1(t− δ1)

+ ζT2 (t− h1)e−αh1Q2ζ2(t− h1)

− ζT2 (t− δ)e−αδQ2ζ(t− δ),

V̇3(xt) =
∑2
i=1 ẋ

T (t)(δ21Ri + δ22Si)ẋ(t)− αV3(xt)

− δ1
∫ t
t−δ1 ẋ

T (s)eα(s−t)R1ẋ(s)ds

− δ1
∫ t−δ1
t−h1

ẋT (s)eα(s−t)R2ẋ(s)ds

− δ2
∫ t−h1

t−δ ẋT (s)eα(s−t)S1ẋ(s)ds

− δ2
∫ t−δ
t−h2

ẋT (s)eα(s−t)S2ẋ(s)ds.
Then by using Jensen inequality [5] and enlarging some

terms appropriately, we get
(ḣ(t)−1)e−αh(t) ≤ ψ(µ), (12)

−δ1
∫ t
t−δ1 ẋ

T (s)eα(s−t)R1ẋ(s)ds

≤ −δ1e−αδ1
∫ t
t−δ1 ẋ

T (s)R1ẋ(s)ds

≤ −(
∫ t
t−δ1 ẋ(s) ds)T e−αδ1R1(

∫ t
t−δ1 ẋ(s) ds)

= −ξT (t)(e1 − e2)T e−αδ1R1(e1 − e2)ξ(t), (13)

−δ1
∫ t−δ1
t−h1

ẋT (s)eα(s−t)R2ẋ(s)ds

≤ −ξT (t)(e2 − e3)T e−αh1R2(e2 − e3)ξ(t), (14)

for the case time delay h(t) ∈ [h1, δ], by Lemma 1, there
exists matrix T1, such that[
S1 T1
TT1 S1

]
≥ 0, (15)

−δ2
∫ t−h1

t−δ ẋT (s)eα(s−t)S1ẋ(s)ds

≤ −δ2e−αδ
∫ t−h1

t−d(t) ẋ
T (s)S1ẋ(s)ds

− δ2e−αδ
∫ t−d(t)
t−δ ẋT (s)S1ẋ(s)ds

≤ −e−αδξT (t)
[
e3 − e6
e6 − e4

]T [
S1 T1
TT1 S1

] [
e3 − e6
e6 − e4

]
ξ(t).

Similarly to above procedure, we can cope with the situation
h(t) ∈ [δ, h2].

According to (3), there exists scalar ϵ > 0 such that

ϵfT (t, x)f(t, x) ≤ ϵḠT (x)Ḡ(x),

thus we have

ϵξT (t)ḠT Ḡξ(t)− ϵξT (t)eT8 e8ξ(t) ≥ 0 (16)

with Ḡ = Ḡ1e1 + Ḡ2e6 + Ḡ3Ke1.

By using system’s information we add the left side of fol-
lowing equation into the derivative of Lyapunov functional:

2(xT (t)N1 + xT (t− h(t))N2 + ẋT (t)N3)(−ẋ(t)

+Āx(t)+Adx(t−h(t))+Ēf(t, x)) = 0, (17)

where Ni are matrices with appropriate dimensions.
For getting LMI criteria and obtaining the controller, we

set N1 = N, N2 = γ1N , N3 = γ2N and assume N−1 exist,
and from the above equations we can get

V̇ (xt)+αV (xt) ≤ ξT (t)(Π(i)+ ḠT Ḡ)ξ(t), (18)

with some transformation of the matrices. By Schur Com-
plement, the negative of (18) imply[

Πi ϵḠ

ϵḠT −ϵI

]
< 0. (19)

Pre-multiplying and post-multiplying both sides of (19) by
diag{

∑7
i=1 e

T
i N

−1ei + ϵ−1eT8 e8, ϵ
−1I} and its transpose,

denoting N1 = diag{N,N}, P̄ = N−1PN−T , Q̄ =

N−1QN−T , Q̄i = N−1
1 QiN

−T
1 , R̄i = N−1RiN

−T S̄i =

N−1SiN
−T , T̄i = N−1TiN

−T (i = 1, 2), N̄ = N−1,
W = KN̄T and ϵ̄ = ϵ−1, then the hold of (19) is equiva-
lent to (10). By applying the similar transformation to (15),
and notice that from (9) and (18), we have

V (xt) ≥ m̄∥x(t)∥2, V (xt0) ≤ n̄∥x(t0)∥2θ, (20)

V (xt) < e−α(t−t0)V (xt0), (21)

by some computation we can get Theorem 1, thus complete
the proof.

Remark 1. The term (ḣ(t) − 1)e−αh(t) appeared in
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the derivative of Lyapunov functional can be enlarged as
µe−αh1 − e−αh2 , to reduce the conservativeness of the cri-
teria, we consider the situations that µ ≥ 1 and µ < 1, re-
spectively, and enlarge it as ψ(µ), while the equation (24) in
Wang [1] only holds when µ ≥ 1 but have some conserva-
tiveness when µ < 1.

4 NUMERICAL EXAMPLES
In this section, we consider three examples to show the

effectiveness of the obtained criteria.
We compare our methods to that of Botmart [2] in Exam-

ple 1. The obtained results are listed in Table 1 below, which
show the less conservativeness of our criteria.

Example 1. Consider the system (1) with

A =

[
0 0

0 1

]
, Ad =

[
−2 −0.5
0 −1

]
, B =

[
0

1

]
.

Table 1. Admissible upper bound h2 for unknown µ and
various (ρ, h1) with (γ1, γ2) = (0, 1.9).

(ρ, h1) (0.1, 0) (0.1, 0.5) (0.2, 0) (0.2, 0.5)
[2] h2 0.406 0.590 0.381 0.545
T1 h2 1.2152 1.4650 1.0859 1.3172

Remark 2. Following the same method, we can get better
results by dividing the time intervals into more subintervals
while more computational burden will be taken.

Remark 3. To get the controller matrix K, we fix the forma-
tion of free-weighting matrices Si, to get less conservative
results the values of γ1 and γ2 need to be appropriate chosen,
we will do further research to this problem.

In Example 2, we compare our method to that of Wang [1]
with the robust exponential stabilization problem.

Example 2. Consider the uncertain system (1) with

A =

[
−2 0

0 −0.9

]
, Ad =

[
−1 0

−1 −1

]
, B =

[
0

1

]
,

E1 =

[ √
0.2 0

0
√
0.05

]
, E2 =

[ √
0.1 0

0
√
0.3

]
, E3 =[ √

0.01 0

0
√
0.1

]
, G1 = E1, G2 = E2, G3 =

[
0.01

0

]
.

For µ = 1.1, ρ = 0.1, h1 = 0.3, and h2 = 0.7, in Wang
[1] the state convergence rate is estimated as

∥x(t)∥ ≤ 2.0463e−0.1(t−t0)∥x(t0)∥θ,

while with (γ1, γ2) = (0.1, 1), from Theorem 1 we get
the stabilization controller is K = [−0.2273,−3.0087], and
with a smaller σ = 1.5947, the state convergence rate satisfy

∥x(t)∥ ≤ 1.5947e−0.1(t−t0)∥x(t0)∥θ.
Furthermore, by Theorem 1 we can get the allowable up-

per bound h2 is 1.5815, and the stabilization controller is
K = [−49.5411,−157.8835] with σ = 5.4790. From Fig.1.

we can see that the state of controlled closed-loop system is
exponential stable under initial condition φ(s) = [3,−1], in-
terval time-varying delay [h1, h2] = [0.3, 1.5815] and µ =

1.1 with the convergence rate ρ = 0.1.
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x
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Fig.1. State response with controller u(t)

5 CONCLUSION
In this paper, the problem of robust exponential stabiliza-

tion for interval time-varying delay systems have been inves-
tigated. By dividing the delay intervals into two equal subin-
tervals and using free-weighting matrix technic, robust expo-
nential stabilization criteria are obtained in terms of LMIs.
Numerical examples are given to show the effectiveness and
less conservativeness of our obtained criteria.
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