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Abstract: This paper studies a relationship between an adaptive strategy and its payoff. In a recent study, the adaptive strategy
has already proposed to evaluate how much the strategy obtains a payoff on average against not only itself but also other strategies.
We study the adaptive strategy in two examples: a prisoner’s dilemma and self-repairing network. We study the prisoner’s
dilemma by focusing on two parameters: benefit and cost. We reveal a condition when the strategy gets the highest adaptive
measure against other strategies in the prisoner’s dilemma game. Further, we apply the analysis to the self-repairing network
with spatial strategies. We investigate the adaptive strategy in the self-repairing network by simulations. We revealed that the
adaptive strategies get the high payoff which minimize the standard deviations in the simulations.
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1 INTRODUCTION

Autonomous distributed systems composed of agents
need to adapt changes of environments. In the autonomous
distributed systems, the agents pursue their own profits to
achieve assigned their own goals. The agents need to change
their behavior to adapt conditions in the dynamic environ-
ments. The agents determine next actions based on their
own strategies. However, decision makings of the agents
will affect each other. The policy of the agent behavior is
represented as a strategy in game theory. The agents need
to choose the strategy that earns the high profits as much
as possible and determine their next actions based on their
strategies.

There are various kinds of agents in information networks.
The agents, connected each other with a network structure,
interact with other agents based on their own strategies. The
agents will encounter other ones having not only same strate-
gies but also different strategies. For the agents, to choose
the strategies earning the high payoff to specific strategies is
risky, since, the agents face with a lot kind of the other agents
selecting different strategies. The neighbor agents of the
agent also will affect itself as the environment. The environ-
ments dynamically change according to interactions among
them. Therefore, the agents need to have the strategies that
obtain the high profits on average against other strategies.

An earlier study has already proposed a concept of an
adaptive strategy [1] of which how well the strategies per-
form against other strategies. The performance of the strate-
gies is evaluated as adaptive measures based on interaction
results of the payoffs. In the study, the authors introduced

two models as calculation examples: prisoner’s dilemma [2]
and self-repairing network [3, 1]. The evaluation results of
the strategies from the viewpoint of the adaptive strategy
showed that the strategies earning the highest payoff do not
correspond to that ones getting the highest adaptive mea-
sures. The study has reported that the adaptive strategies
would perform well against other strategies although they do
not obtain the highest payoffs.

The related works on the adaptive strategies are fault-
tolerant strategies [4] and evolutionary stable strategies [5, 6].
However, both notions aim to investigate robust strategies
against other strategies. Other related studies aim to con-
struct a good strategy (strong strategy) than other strategies.
Further, they compared with the proposed and other strate-
gies by simulations [7, 8, 9, 10]. However, the focus of the
adaptive strategies is to investigate adaptiveness of the strate-
gies that earn the high payoff on average against other strate-
gies.

An aim of this paper is to investigate two issues on the
adaptive strategies. Firstly, we analyze the iterated prisoner’s
dilemma game as a typical example. We reveal a certain con-
dition in which an adaptive measure of a trigger strategy ex-
ceeds that one of always defection strategy. Secondly, we
study relationships between the adaptive measures and vari-
ances of the payoffs earned by the strategies. The earlier
study [1] showed the strategies earning the highest adaptive
measures obtains the high payoffs on average against other
strategies. For this issue, we consider a self-repairing net-
work as another example in the autonomous distributed sys-
tems. We study the self-repairing network composed of the
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agents choosing spatial strategies by numerical simulations.
In Section 2, we give a formal definition of adaptive strate-

gies, and we consider parameter conditions on the adaptive
strategies in the iterated prisoner’s dilemma with three sim-
ple strategies. In Section 3, we introduce and define the self-
repairing network for simulations. In Section 4, we evaluate
the self-repairing network from the viewpoint of the adaptive
strategies by simulations. In Section 5, we discuss the signifi-
cance of the adaptive strategies on the basis of the simulation
results. In Section 6, finally, we state our conclusions in this
paper.

2 ADAPTIVE STRATEGY
2.1 Definition

The concept of adaptive strategies and its formal definition
has already introduced in the former paper [1]. The concept
of the adaptive strategies is proposed in order to construct
the autonomous distributed systems which work well on av-
erage in uncertain environments. The concept of the adap-
tive strategies incorporates fundamental two factors: (a) co-
operative and (b) self-tolerance. Cooperative means that the
strategies need to behave cooperative to maintain their per-
formance against the opponents because the agents would en-
counter various kinds of strategies in information networks.
Self-tolerance means that the agents need to cooperate with
their neighboring agents because if they defect from others
who have the same strategies, they would lose future oppor-
tunities to get a higher payoff. These two fundamental factors
require agents to cooperate with not only themselves but also
other agents.

For designing the strategies, performance of the strategies
how much they behave well agains other strategies is evalu-
ated as an adaptive measure. This measurement is defined by
payoffs and strategies. Let S denote a set of strategies. Let
N denote the cardinality of the strategy set S. Let i, j, and
k denote natural numbers used for numbering the strategies
in the strategy set. Strategy si is expressed as one strategy in
the set S numbered as i. Let Ep[si|sj ] denote the expected
payoff of strategy si against sj . Let Em[si] be the expected
payoff of the strategy si for all strategies.

Let denote the adaptive measure E[si] of a strategy si its
strength. The adaptive measure is represented as follows:

E[si] =
1

NM

∑
sj∈S

Ep[si|sj ]Em[sj ] (1)

Em[sj ] is expressed as follows:

Em[sj ] =
1

NM

∑
sk∈S

Ep[sj |sk] (2)

The symbol M represents the maximum total payoff in
the payoff matrix of the game. Formula (2) represents the

averaged performance of strategy sj for all strategies. The
adaptive measure in Formula (1) is expressed as the prod-
uct of Ep[si|sj ] and Em[sj ] to evaluate whether strategy
si achieves the higher payoff against strategy sj even if sj

achieves a high payoff for other strategies. The adaptive
measure will decrease when strategy si achieves the smaller
payoff and even if strategy sj achieves the higher averaged
payoff. In contrast, the adaptive measure will increase when
strategy si gets the larger payoff and strategy sj obtains the
higher averaged payoff. The range of the measure can be
normalized from zero to one. The strategy is adaptive if the
measure is close to one, and it is not adaptive if the measure
is close to zero. The adaptiveness of the strategies can be
evaluated by comparing with the measures.

2.2 Example of adaptive strategy analysis
We present a calculation example of the adaptive mea-

sures of the adaptive strategies in the iterated prisoner’s
dilemma (IPD). This example uses simple three strategies:
All-C (always cooperate), All-D (alway defect) and Trigger
(it cooperates until an opponent defects in a previous round,
otherwise defects). We reveal a condition in which the adap-
tive measure of Trigger strategy exceeds All-D strategy’s one
where a discount rate is a variable parameter. The IPD is
a temporal extension of the prisoner’s dilemma. The pris-
oner’s dilemma [2] is a one-shot game whereas the IPD is a
repeated game. We consider a two-player game in the infi-
nite IPD. The players determine their actions of cooperation
or defection simultaneously without prior consultation before
the game. The payoff for each player is determined by com-
binations of moves among the players.

The payoff matrix is shown in Table 1. The payoff matrix
is defined with two parameters b (benefit) and c (cost). Each
symbolic value in the table satisfies the conditions T > R >

P > S and 2R > T + S. We assume a discount rate w of
the payoff for every round. The discount rate can be used
for calculating the discounted payoff regarded as the future
payoff.

The expected payoffs of the infinite IPD for the three
strategies can be calculated theoretically [2]. The theoreti-
cal results shown in Table 2 are calculated from the payoff
matrix shown in Table 1.

Table 1. Payoff matrix for the proponent in the prisoner’s
dilemma with two parameters

Player 2
C D

Player 1
C R = b � c S = �c

D T = b P = 0
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Table 2. Expected payoff for the proponent in the infinite
IPD with two parameters

Opponent
All-D Trigger All-C

Proponent

All-D 0 b b
1−w

Trigger �c b−c
1−w

b−c
1−w

All-C −c
1−w

b−c
1−w

b−c
1−w

From Table 2, we simply obtain the averaged payoffs for
all strategies.

Em[All � D] =
2b � 3c

3b
(3)

Em[Trigger] =
1 � w

3b

(
�c +

2(b � c)
1 � w

)
(4)

Em[All � C] =
2 � w

3
(5)

We focus on the two strategies of Trigger and All-D. The
adaptive measures of these two strategies can be calculated
by the definitions. Therefore, we obtain adaptive measures
of both strategies as follows:

E[All � D] =
1
9b

(
�cw2 + 4cw � 2bw (6)

�6c + 4b

)
E[Trigger] =

1
9b

(
�bcw2 + (4bc � c2)w + 6c2

�12bc + 4b2

)
(7)

We calculate the condition of the discount rate which leads
the adaptive measure of Trigger to be the highest value.

E[Trigger] > E[All � D]

�2b2w + c2w > 6c2 � 6bc (8)

We replace the term c/b with r. Then, we obtain

w >
6r(r � 1)

(
√

2 � r)(
√

2 + r)
(9)

According to the above result, the adaptive measure of
Trigger exceeds the adaptive measure of All-D when the dis-
count rate exceeds the threshold. Fig. 1 shows a curve of dis-
count rate against the cost-benefit ratio calculated by Formula
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Fig. 1. Discount rate curve against cost-benefit ratio in Eq.
(9).

(9). The highest discount rate is 0.88 when the cost-benefit
ratio is 0.69. The discount rate increases as the cost-benefit
ratio grows because the defective strategy dominates the co-
operative strategies where the the discount rate is smaller
than its highest value. On the other hand, the discount rate
decreases as the cost-benefit ratio grows to be larger than 0.69
because the benefit is small due to the cost to be large.

3 SELF-REPAIRING NETWORK
In order to consider the relationship between the high-

est adaptive measures and the payoffs, we apply the adap-
tive strategy analysis to the self-repairing network with spa-
tial strategies [11]. The self-repairing network is a network
model in which agents repair other agents by copying their
contents mutually. We consider the self-repairing network
by game-theoretic approach model [3, 12]. We adopt the
proposed former model defined by replicator dynamics and
master equations.

For simplicity, we assume the network large, well-mixed
population. Each agent has a state either normal or abnormal.
We denote the frequency of normal agents (abnormal agents)
by ρN (ρA). Each agent determines the next action: repair
(C, cooperation) or not repair (D, defection). We denote the
frequency of repair agents (not repair agents) in the network
by ρC (ρD). The agents determine their actions based on
their strategies.

The repairing is done between the two agents. The two
agents are randomly chosen from the network, then they re-
pair each other based on their decisions. The repair success
rate is different by the state of the agent. We denote the repair
success rate of the normal and abnormal agents by α and β

respectively. We assume to simplify the model that the re-
pair by the normal agents is always successful (α = 1). The
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repaired agent becomes normal if the repairing is successful,
otherwise the repaired agent becomes abnormal. We assume
that the normal agents become abnormal by spontaneous fail-
ure. We denote the failure rate by λ.

From above definitions, the repairing dynamics is ex-
pressed as follows:

dρN

dt
= αρNρAρC + βρ2

AρC � (1 � α)ρ2
NρC

�(1 � β)ρAρNρC � λρN (10)

Each term represents the repair interactions between the
two agents. The first and second terms express the increase
of normal agents while the third and forth terms represent the
decrease of the abnormal agents.

The agents have their own resources consumed by repair-
ing. The normal agents (abnormal agents) have the maximum
resources bN (bA). If the normal agents (abnormal agents) do
the repairing, then the agents consume their resources only
cN (cA). The agents deal with the remained resources as the
available resources. The resources of the agents are filled in
the beginning of the step.

The agents determine their next actions based on the
strategies. We introduce spatial strategies [11] to the agents.
The spatial strategies determine the actions involving the ef-
fects of neighborhood decision making. Especially, kC strat-
egy of the spatial strategies is introduced into the agents. In
an original definition of kC strategy, it determines the next
action repair if the number of defeaters exceed the thresh-
old k. We modify the strategy from the original one to the
strategy one that determine the next actions based on the fre-
quency of silent agents ρD in the previous step. The range of
the threshold k is from 0 to 1. We denote the frequency of
the kC strategy by ρk.

For calculating the payoff of each strategy, we define a
function ρk

C(ρp
C) that returns a binary value 0 or 1 according

to the frequency ρp
C of the repair agents in the previous step.

The function ρk
C(ρp

C) is defined as follows:

ρk
C(ρp

C) =

{
0 (ρp

C > k)

1 (ρp
C � k)

(11)

Let denote W (kC) the expected payoff of the strategy
kC. The W (kC) is expressed as follows:

W (kC) = ρk(ρN ((bn � cn)ρk
C(ρp

C) + bn(1 � ρk
C(ρp

C)))

+ρA((ba � ca)ρk
C(ρp

C)

+ba(1 � ρk
C(ρp

C)))) (12)

Let denote W expected payoff of the whole network. The
expected payoff W is expressed as follows:

W = ρk1W (k1C) + ρk2W (k2C) (13)

We consider the self-repairing network with the agents
implementing two different strategies. The strategies are de-
noted as k1C and k2C. Therefore, the dynamics of the com-
petition among the strategies is expressed as follows:

dρk1

dt
= (W (k1C) � W )ρk1 (14)

Therefore, the dynamics of the self-repairing network
with the spatial strategies are expressed by the two equations
(10) and (14) are expressed.

4 SIMULATIONS
We make a round-robin tournament of the self-repairing

network with spatial strategies. We evaluate the spatial strate-
gies in the self-repairing network from the viewpoint of the
adaptive strategy. We choose two strategies from the strategy
set and run the simulations with the two strategies. Parame-
ters for simulations are shown in Table 3. After simulations,
we calculate the adaptive measure for each strategy.

Table 4 shows the round-robin tournament results for the
failure rate λ = 0.01. According to the result, the 0.6C strat-
egy obtains the highest averaged payoff among the strategies,
while the 1C strategy gets the highest adaptive measure and
smallest standard deviation. The 0.6C strategy gets the high
payoff against other strategies except the 1C strategy. The
1C strategy obtains the high payoff against not only itself
but also other strategies although 1C strategy agents are re-
paired by other strategy agents. This difference makes the
1C strategy get the highest adaptive measure.

Table 5 shows the round-robin tournament result for the
failure rate λ = 0.04. According to the result, the 0.6C strat-
egy obtains the highest averaged payoff among the strategies,
while the 0.6C strategy gets the highest adaptive measure
and smallest standard deviation. This result is contrary to the
round-robin tournament one where the failure rate λ = 0.01.
For both cases, 0.6 strategy obtains the higher payoff than
0.6C. Unfortunately, the 0.6C strategy causes the decrease
of the payoff when it repairs itself. The 1C strategy makes its
standard deviation the smallest. In other words, the strategy
obtaining the highest adaptive measure also gets the smallest
standard deviation.

According to two cases, the standard deviations of the
adaptive strategies become the smallest values. The adap-
tive strategies earn the high payoff on average and make the
standard deviations he smallest.

5 DISCUSSION
In the previous section, we compared the two results

where the different failure rates are used. The round-robin
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Table 3. Parameters for numerical simulations
Parameter Name Value

T Step 500
α Repair success rate by normal agents 1.0
β Repair success rate by abnormal agents 0.1
bN Available resources of normal agents 1.0
cN Repair cost of normal agents 0.25
bA Available resources of abnormal agents 0.5
cA Repair cost of abnormal agents 0.25
λ Failure rate 0.01, 0.04
k k value for kC strategy 0.0-1.0 (0.2 step)

ρk(0) Initial frequency of kC strategy 0.5
ρC(0) Initial frequency of cooperators 0.5

Table 4. Adaptive measure and statistical values (The failure rate λ = 0.01)
0.0 0.2 0.4 0.6 0.8 1.0 Averaged payoff Standard deviation Adaptive measure

0.0 0.424 0.424 0.424 0.002 0.002 0.002 0.213 0.211 0.046
0.2 0.424 0.424 0.424 0.002 0.002 0.002 0.213 0.211 0.046
0.4 0.424 0.424 0.424 0.002 0.002 0.002 0.213 0.211 0.046
0.6 0.845 0.845 0.845 0.358 0.358 0.003 0.542 0.325 0.151
0.8 0.714 0.714 0.714 0.358 0.358 0.003 0.477 0.265 0.137
1.0 0.534 0.534 0.534 0.531 0.528 0.260 0.487 0.102 0.168

Table 5. Adaptive measure and statistical values (The failure rate λ = 0.04)
0.0 0.2 0.4 0.6 0.8 1.0 Averaged payoff Standard deviation Adaptive measure

0.0 0.357 0.357 0.357 0.002 0.002 0.002 0.180 0.178 0.033
0.2 0.357 0.357 0.357 0.002 0.002 0.002 0.180 0.178 0.033
0.4 0.357 0.357 0.357 0.002 0.002 0.002 0.180 0.178 0.033
0.6 0.712 0.712 0.712 0.292 0.292 0.003 0.454 0.276 0.105
0.8 0.582 0.582 0.582 0.292 0.292 0.003 0.389 0.216 0.093
1.0 0.507 0.507 0.507 0.505 0.504 0.252 0.464 0.094 0.136

tournaments demonstrated the considerable results. The stan-
dard deviations of the strategy obtaining the highest adaptive
measure are the smallest values among the strategies. In one
of the two cases, the strategy does not correspond to that one
obtaining the highest averaged payoff. On the other hand, the
strategy obtaining the highest adaptive measure correspond
to that one obtaining the highest averaged payoff. However,
the adaptive strategies could get the high payoff on average
against given strategies set and make its standard deviation
the smallest in them.

In information network, the agents encounter various
kinds of agents implementing different strategies. The agents
need to adapt behavior of the other agents in order to pursue
their goals. According to the simulation results, the adap-
tive strategies could obtain high payoffs on average against
other strategies. Further, their lack of the payoffs compared
with the averaged payoffs would be the smallest or small val-
ues. The neighborhood of the one agent can be regarded as

its environment. For the agents, to adapt for a specific en-
vironment is not reasonable because of they would face and
need to follow the changes of the environments. The adap-
tive strategies would adapt to different environments by the
simulation results.

6 CONCLUSIONS
We studied a relationship between an adaptive strategy

and its payoff in both examples of a prisoner’s dilemma and
self-repairing network. In the prisoner’s dilemma, we con-
sidered on the adaptive strategies what conditions make the
strategies get the highest adaptive measure. We analyze the
adaptive strategies in the prisoner’s dilemma game with sim-
ple three strategies and certain parameters. For the analysis,
this paper focused on the two parameters: benefit and cost.
We revealed the condition of which the strategy gets the high-
est adaptive measure against other strategies in the prisoner’s
dilemma.
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Further, we considered the adaptive strategies in the self-
repairing network with spatial strategies. The dynamics of
the self-repairing network involve interactions on a mutual
repairing and strategy update. We investigated the adaptive
strategy in the self-repairing network by numerical simula-
tions. In the results, we showed that the standard deviations
of the strategies obtaining the highest adaptive measures are
the smallest values among the strategies even the strategies
do not earn the highest averaged payoffs. We revealed that
the adaptive strategies would get the high payoff which min-
imize the standard deviations.
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