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Abstract: There are some methods of Identifying rules of cellular automata (CA) from their spatiotemporal patterns. But these
methods do not consider relations of local rules. The relations include spatial ones and temporal ones. For example, a rule
which satisfy the mass conservation law has spatial constraints for how to apply local rules to each cells. A local rule network
represents spatial or temporal associations between local rules which are identified from spatiotemporal patterns. This paper
address to construct local rule networks from spatiotemporal pattern and propose rule identification methods using the networks.
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1 INTRODUCTION
Visualizations are used extensively for understanding be-

haviors of various phenomena. For example, Bayesian net-
works which are visualized causal associations by graphs
(networks), apply to various area such as image recogni-
tion [1, 2]. Meanwhile, Wolfram classified 256 elemental
rule of one dimensional cellular automata (CA) [3] into four
classes by their behaviors [4]. Wolfram found differences be-
tween global behaviors of 256 rules by constructing directed
graphs. The graphs represent transitions between possible
configurations in certain space size. A Wolfram’s graph can
represent global behaviors of a rule but we cannot know lo-
cal behaviors from the graph. Therefore we propose local
rule network which consists of local rules as nodes and their
transitions as arcs. A local rule network can represent asso-
ciations between local rules. A rule of CA consists of local
rules and each cell changes own state by applying a local rule.
A local rule describes local a behavior which determine next
state of a cell in a certain neighborhood pattern.

CA are known as which can generate various complex pat-
terns from simple rules and uses for modeling of phenom-
ena which generate spatiotemporal patterns. For example,
ASEP[5] which is known as a traffic model is one of the one
dimensional probabilistic cellular automata (PCA).

On the other hand, some researches deal with identify-
ing cellular automata rules from analyzing their spatiotem-
poral patterns[6, 7]. Ichise proposed a method which iden-
tify a one dimensional deterministic and probabilistic cellu-
lar automaton rule from a spatiotemporal pattern generated
by a computer simulation. Authors also applied the iden-
tifying method to actual phenomena and spatial prisoner’s
dilemma[8, 9]. The identifying method is simple which iden-
tifies local rules by scanning spatiotemporal patterns. The
method can identify rules when spatiotemporal patterns are

sufficiently big and simple such as patterns of Wolfram’s 256
elemental rules. But the method cannot completely iden-
tify some rules which have hidden (embedded) rule such
as ASEP’s mass conservation law[10]. Because the method
does not consider association between local rules. Therefore
this paper propose local rules network which are constructed
from spatiotemporal patterns and visualize local behaviors of
these spatiotemporal patterns.

Section 2 explains cellular automata. Then local rule net-
work is defined in section 3. Section 4 shows a example of
patterns which the method cannot completely identify rules
and discusses using local rule network.

2 CELLULAR AUTOMATA
Cellular automaton (CA) consists of cells which arranged

on a lattice. Each cell has certain states and changes next
own state following current neighborhood pattern. In this pa-
per we restrict ourselves a case of one dimensional cellular
automata. A time evolution of a cell is described by formula
(1). Where nti is a neighborhood pattern of cell i and r is
neighborhood radius. When r = 1 current left, right and
own three neighborhood determine the next state. A map-
ping f : N → S is a rule of CA where S is space of possible
states and N(= Sr+1) is a set of possible neighborhood pat-
terns. In a elemental CA (ECA) which is two states, three
neighborhood and one dimensional CA has eight local rules
because the number of possible neighborhood patterns is 23.
Then there are 28 = 256 rules in ECA.

sti+1 = f(nti)

nti = sti−r, · · · , sti, · · · , sti+r
(1)

Wolfram numbered these 256 ECA rules. The numbers
are defined by formula (2). Where cj(∈ S) is a state after
applying local rule j such as table 1. The formula (2) also

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12), 
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 303



can consider that below of table 1 is binary string. Table 2
shows an example of rule 90.

R =
8∑
j=0

cj2
j (2)

Table 1. A rule of 2-states,3-neighbors,one dimensional cel-
lular automata (ECA). The rule consists of eight local rules.

nti 111 110 101 100 011 010 001 000

st+1
i c7 c6 c5 c4 c3 c2 c1 c0

Table 2. An example of rule90. When we consider
the bottom column to binary number, it corresponds to
(01011010)2 = 90

nti 111 110 101 100 011 010 001 000

st+1
i 0 1 0 1 1 0 1 0

Fig. 1 shows a spatiotemporal pattern generated by com-
puter simulation of rule 90. Where white cells indicate 0 and
black are 1. Space size is 100 and simulation time steps are
100. Initial condition is given by random.

Fig. 1. A spatiotemporal pattern which is generated by
rule90. White cells indicate 0 and black is 1. Space size
is 100 and simulation time steps are 100. Initial condition is
given by random.

3 LOCAL RULE NETWORK
Formula (3) defines a local rule networkG = (V,E). Fig.

2 shows a small example of local rule network. V is a set

of nodes which are local rules and E is a set of arcs which
are transitions (lj , lk) from local rule lj to lk. Where nj is
jth neighborhood pattern. For example, n7 corresponds to
(1, 1, 1) in Table 1. When the neighborhood pattern of cell
i at time step t is (0, 0, 0), time step t + 1 is (0, 1, 0) and
the state of cell i at time step t + 2 is 0, there is a transi-
tion from local rule ((0, 0, 0), 1) to ((0, 1, 0), 0). Each arc
has transition frequency w(j, k) as weight. Then transition
frequencies satisfy condition (4).

V = {lj |l = (nj , cj), nj ∈ N}
E = {(lj , lk)|lj , lk ∈ V } (3)

∑
lk∈V

w(lj , lk) = 1 ∀lj ∈ V (4)

Node：Local Rule

Arc：Transition

Weight：Probability

1.0

0.0

Fig. 2. An example of local rule network. Nodes correspond
to local rules and arcs correspond to transitions between local
rules. Each arc has transition frequency as a weight.

A local rule network is generated by scanning given a spa-
tiotemporal pattern and finding local rules and their transi-
tions. Then a transition frequency is obtained from the num-
ber of appearance. Fig. 3 shows a local rule network gener-
ated by a spatiotemporal pattern of rule 90 when space size
is 1000, simulation time steps is 1000 and initial condition is
random. Rule 90 is classified as class 3 which behaves chaos
by Wolfram. Therefore rule 90 generates complex fractal pat-
terns. Then the local rule network visualizes that there are
many transitions and the rule is complex. Meanwhile, Fig.
4 shows a local rule generated by rule 5. This network has
some hub local rules and it shows rule 5 is simple rule. Ac-
tually a spatiotemporal pattern of rule 5 is monotonous such
as Fig. 5.

4 APPLICATION TO ASEP
ASEP is a traffic model and two states, three neighbors

and one dimensional probabilistic CA. Each cell has a state,
existing a car on the cell (= 1)or not existing (= 0). Each car
on the cell moves to front cell in probability pwhen front cell
is empty. The number of cars is constant. Thus cars suddenly
appears or disappears. It means that ASEP satisfies the mass
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Fig. 3. A local rule generated from a spatiotemporal pattern
of rule90. Each node indicates a two states and three neigh-
bors local rule. White cells indicate 0 and black is 1.

conservation law. But the mass conservation law cannot find
a identified rule by the identifying method. While the method
identify same rules from a pattern of satisfying the mass con-
servation law and not satisfying one [10]. Therefore we es-
timate whether spatiotemporal patterns satisfy the mass con-
servation law using local rule networks. Fig. 6 is generated
by ASEP simulation and Fig. 7 is generated by a similar rule
to ASEP but it does not satisfy the mass conservation law.
These patterns shows major differences by comparison.

Fig. 8 is a local rule network generated from Fig. 6 and
Fig. 9 is generated from Fig. 7. Fig. 9 shows that it has some
transitions which do not appear in Fig. 8. These transitions
break the mass conservation law. Thus local rule network can
bring out differences between rules which identified as same
rules by the identifying method.

5 CONCLUSIONS
This paper proposed a visualization of cellular automata

rules from spatiotemporal patterns. A local rule network
visualizes associations between local rules. Then we also
shows an example of analysis in ASEP using local rule net-
works. Local rule network can bring out differences be-
tween rules which identified as same rules by the identifying
method.
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Fig. 4. A local rule generated from a spatiotemporal pattern
of rule5. Each node indicates a two states and three neigh-
bors local rule. White cells indicate 0 and black is 1. A
spatiotemporal pattern is generated with 1000 space size and
1000 simulation time steps.

Fig. 5. A part of spatiotemporal pattern which is used for
generating Fig. 4. White cells indicate 0 and black is 1.
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Fig. 6. A spatiotemporal pattern of ASEP with p = 0.8,
100 space size and 100 simulation time steps. White cells
indicate 0 and black is 1.
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Fig. 7. A spatiotemporal pattern of general PCA with 100
space size and 100 simulation time steps. Its result of iden-
tification similar to Fig. 6 one. White cells indicate 0 and
black is 1.

Fig. 8. A local rule network generated from Fig. 6.

Fig. 9. A local rule network generated from Fig. 7.
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