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Abstract: This paper proposes a reactive control method for mobile robots in the presence of moving obstacles. The method is
based on the dynamic window algorithm and extends it in order to avoid moving obstacles efficiently. Firstly, the future collision
is detected based on the generalized velocity obstacles. Secondly, input value can be varied within the prediction horizon. This
means that better input can be selected such that the robot starts passing maneuver ealier. However, this causes the dimension of
the search space larger. In order to reduce the computation time, GDS (gradually dense-sparse) discretization and randomized
sampling method similar to RRT is adopted. By means of these extensions, the robot can avoid moving obstacles with simpler
cost function and reasonable computation time. Performance of the proposed method is evaluated by numerical simulations.
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1 INTRODUCTION

The problems of path-planning and collision avoidance
are computing a collision-free path for a robot moving among
obstacles and are crucial tasks for mobile robots. The ap-
plication area has been spread to wide areas such as, auto-
mated transportation systems, automated factories, and robot
human interactions. In many cases, the environment is uncer-
tain and dynamic, thus, the path-planning and obstacle avoid-
ance system should perform in such environments. When re-
stricted to the collision avoidance, there have been proposed
many reactive approaches in the last thirty years. Originally,
these approaches have been applied to the static environment,
then, some of them have been extended to the dynamic case
recently.

The dynamic window approach, which was originally pro-
posed by Fox et al in [1], is one of the most popular re-
active collision avoidance methods. The original algorithm
was extended by Brock and Kathib [2] such that the global
path planning such as A* is integrated in the cost function.
Furthermore, Seder and Petrović [4] applied the FD* search
algorithm in order to consider the dynamically changing en-
vironment. However, in the case where the obstacles are
moving, the planning should be time-dependent especially
in the predicting phase, thus, more complicated computation
for path planning is needed.

On the other hand, because of itslook ahead nature, the
dynamic window approach can be thought as one of the
Receding Horizon Control problem (RHC, for short) in the
model predicted control. This point has been pointed out by
Ogren and Leonard [3]. In the general RHC problem, it is as-
sumed that the input may change within the predicting hori-
zon when the optimal input is searched.

But, in many works on the dynamic window approach,

the use of constant input value is assumed in order to reduce
the dimension of search space and decrease the computa-
tion time. Recently, Kiss and Tecesz [7] applied the RHC
approach to dynamic window and they permitted piecewise
constant input in the prediction phase, however, they did not
show the concrete method to compute the optimal input se-
quence and, in addition, considered only static problem.

In this paper, the authors propose a method to extend the
dynamic window approach to the moving obstacle avoidance
with piecewise constant input. In the proposed method, the
obstacles are divided to two classes; static and dynamic. The
goal-intended term in the cost function is calculated by path
planning method only for static obstacles. The collision to
the dynamic obstacles are evaluated by computing the gen-
eralized velocity obstacles which is proposed by Wilkie et al
[5]. In order to reduce the computation time, a randomized
planning method with the gradually dense-sparse discretiza-
tion is applied. The randomized planning method used in
this work is proposed by Brooks et al [9] for the static path
planning problem and the authors modify it in order to fit to
the dynamic obstacle avoidance. The gradually dense-sparse
discretization [10] is one of the methods to discritize the time
horizon in the RHC problem and can reduce the search space
without the loss of control performance. By applying these
methods, the robot can avoid the obstacles with better behav-
ior and with admissible computation time. The effectiveness
of the proposed approach is evaluated by numerical simula-
tions.

2 PRELIMINARIES

In this paper, it is supposed that the robot moves on a hori-
zontal plane and its kinematics is nonholonomic differential-
drive type. The shape of the robot and the obstacles are as-
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sumed to be approximated by circles. The state vector of the
robot is given byp(t) := (x(t),y(t),θ (t))T , whereq := (x,y)
andθ are the position and the orientation of the robot. The
continuous time kinematics of the robot is described as

ẋ = cos(θ )v (1)

ẏ = sin(θ )v
θ̇ = w

where the inputu = (v,w) consists of the translational and
the angular velocities. The solution of (1) forp(t0) = p0 and
u(t); t ∈ [t0, t1] is denoted asp(t1; t0, p0,u). Furthermore, it is
assumed that the values and instantaneous variations of these
inputs are limited. It is also supposed that the static map of
the environment and the movement of the temporally obsta-
cles is known.

2.1 Dynamic Window Approach

The dynamic window approach, proposed by Fox et al. [1]
is a velocity space based local reactive avoidance technique
where the optimal control command is searched in the sub-
space of the velocity space. The search space is reduced by
kinematic and dynamic constraint of the robot and the con-
straint that the robot with the input does not collide with the
obstacles, and the reduced search space is calledDynamic
Window and denoted asV .

Suppose that the time is discretized at equal intervals∆t
and the input is constant within each interval. In addition, the
predicting time horizonT is set asT = n∆t for some integer
n > 1 and it is assumed that the input is constant with in the
predicting horizon in evaluating the input.

the cost function in [1] is defined as a linear combination
of heading term,distance term, andvelocity term. If the posi-
tion trajectory by the input is directed towards the goal, then
the heading term takes high value. The distance term is the
smallest distance to the obstacles within the horizon, and the
velocity term is simply the value ofv.

2.2 Extensions of Dynamic Window
Using the original dynamic window approach proposed in

[1], robust obstacle avoidance is achieved in many cases, but
there exist several shortcomings. These are summarized as :

• The heading function may cause local minima when the
shape of the free space is complicated .

• It does not consider the dynamic environment.

To overcome the first problem, Brock and Khatib modified
the cost function such that the free space connectivity in-
formation is taken into account [2]. They used a navigating
function (NF) which is a local minima-free function defined
on the discretized configuration space. NF is computed by
the global path planning algorithm such as A* or wavefront

propagation, so their approach is calledglobal dynamic win-
dow (GDW, for short). Suppose that NF is denoted asN(q)
and the current statep0, inputu ∈ V , and the corresponding
trajectoryp(t; t0, p0,u), t ∈ [t0 : t0 + T ] is given. Then, the
modified cost function in [2] has the following form:

Ωg(p,u) = α ·n1(p,u)+β · vel(u) (2)

+γ ·goal(p,u)+ δ ·n2(p,u),

where n1 takes high value when the difference between
θ (t0+T ; t0, p0,u) and the direction of∇N(q(t0+T ; t0, p0,u))
is large, goal is a binary function (1 if the trajectory
q(t; t0, p0,u) pass through the goal area), and

n2(p,u) = N(q0)−N(q(t0+T ; t0, p0,u)).

Because the original heading term is replaced with NF, the
resulting maneuvers can avoid local minima so that the robot
can move along the optimal path.

It should be noted that, in (2), thedistance term is deleted.
This is because the local minima may caused by the trade-off
betweenheading term and this term.

The second problem is more serious. The framework in
[1] can be easily extended to the dynamic environment by
means of the velocity obstacles[8], or its generalizations [5].
However, if the moving obstacles is not considered in the
path planning phase, trade-off problem may occurs. On the
other hand, the method in [2] needs the global free-space in-
formation. this means, for all time instances, the position and
shape of all obstacles should be known. When the environ-
ment is static, it is sufficient that the path planning is made at
the first phase only. However, when the environment is dy-
namic, on-line re-planning is needed. Furthermore, when the
obstacles move, the path planning problem should be time-
dependent, such that, the search space is extended toC T -
space[6].

In [4], FD* algorithm is applied to GDW and its effective-
ness are shown. But, even if the FD* is used, the replanning
needs large computation time, thus it is not easy to apply this
method to the case where the moving obstacles are large, or
when the obstacles move fast.

2.3 Optimality issue
Many of the previous researches about DW assume that

through the predicting time horizon, the input should be con-
stant. As mentioned above, this is because the search space
can be reduced so that the computation time becomes small.
In the case where the environment is static and where GDW
is used, this yields satisfactory results in many cases because
the optimal path is already given by path planning phase, thus
the time horizon can be made rather short. However, espe-
cially in the dynamic environment without re-planning, this
assumption causes not only non-optimal but also dangerous
behaviors.
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3 EXTENSION TO PIECEWISE CONSTANT IN-

PUTS
Based on the discussions in the previous section, it is pre-

ferred to use piecewise constant inputs for search instead of
constant input throughout the predicting time horizon. As
mentioned above, this extension causes the increase of the di-
mension of the search space such that the computation time
increases exponentially. Therefore, some kind of computa-
tionally efficient solver is required.

It has been reported in [3], DW can be regarded as a spe-
cial kind ofReceding Horizon Control approach in the model
predictive control (MPC), and several real-time solvers has
been proposed for some problems including the trajectory
generation problem for mobile robots. In this paper, Ran-
domized MPC approach in [9] and GDS (Gradual Dense-
Sparse) discretization are applied to DW for moving obstacle
avoidance.

The randomized MPC is a kind of input space-based tree
search for RHC, which is similar to RRT for path planning
problem. For a system

ẋ = f (x,u) (3)

with state variablex ∈ X ⊂ℜn and inputu ∈U ⊂ℜm.
For given time horizon[t0 : t0 + t ′], suppose that its dis-

cretization

t0, t1, t2, . . . , tr−1, tr = t0+ t ′

is given. We suppose that the input is piecewise constant
and letut0:tr = {u0,u1, . . . ,ur−1} denotes a input sequence.
Let c(x(t0),ut0:tr ) denotes a cost function for initial condi-
tion and control sequence. The task is to find the control se-
quenceu∗t0:tr which maximize (minimize)c(x(t0),u∗t0:tr ). The
basic ideas of the randomized MPC is similar to an RRT. A
treeT is grown in which each nodeq consists of the tuple
< xq, ti,uq >: a state, a time, and a control input. This means,
for the parent nodeq′ =< xq′ , ti−1,uq′ >, xq is a solution of
(3) at t = ti whose initial position isxq′ , and to which input
uq is applied. Thus, algorithm iteratively expands the tree
by selecting an existing nodeq′ and a control inputuq, then
adding new nodes by integrating (3) forwards in time until
tq. Let cT (q f ) denotes a cost of the control inputut0:tr from
the root node to a final leafq f at t = t0+ t ′. The basic pro-
cedure in [9] is summarized in Algorithm 1. Furthermore, in
the next time, the previous optimal control sequence is used
for the initial tree for effective search.

In the Algorithm 1, some subroutines should be speci-
fied. The usual RRT implementations ofSELECT NODE
and SELECT CONTROL sample a point in state space at
first, select the nearest node as parent, then select the con-
trol which grows the tree from the node toward the sampled
point. By means of these procedures, uniformly sampling or

Algorithm 1 Tree Expansion for Randomized MPC

1: initialize: T ← qroot =< x(t0), t0,u0 >, cmax← 0;
2: for i = 1, . . . ,N do
3: q← SELECTNODE(T);
4: u← SELECTCONTROL(T,q);
5: t← ti, x← xq;
6: while t < t0+ t ′ do
7: x← x+

∫ ti+1
ti f (x,u)dt;

8: t← ti+1;
9: if x /∈ X then

10: break;
11: end if
12: addqnew =< x, t,u > to T ;
13: if t = t0+ t ′ then
14: cq← cT (qnew);
15: if cq > cmax then
16: cmax← cq, qbest ← qnew;
17: end if
18: end if
19: end while
20: end for

exploring the state space is achieved, however, these requires
high computational time especially when the nearest neigh-
bor node is found. In [9], parent node is selected uniformly
from the existing nodes, and input is also selected uniformly
fromU . In addition, the method to discritize the time horizon
is not addressed. These simplifications yields the low compu-
tational cost, but, may causes biased search in the state space.
In order to achieve wider searching region with small num-
ber of node, Gradual Dense-Sparse discretization (GDS dis-
cretization) for predicting time horizon [10] is effective. In
GDS discretization, the discretization time interval is made
short in the early phase, and is made larger incrementally.

4 SIMULATION RESULTS

The proposed algorithms have been implemented in
Player/Stage software tools. In order to illustrate the effec-
tiveness of the proposed algorithm, a result of a test is pre-
sented in Fig. 1. In Fig. 1 red rectangle is the controlled

Fig. 1. Trajectories of the robot and the obstacle.
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robot and blue one is the obstacle. The obstacle is also gov-
erned by the kinematic model (1) and the input is supposed
to be constant(v,w) = (0.3(m/s),−0.01(rad/s)). The sam-
pling interval and the prediction horizon are set to 0.1(s) and
3.2(s), respectively. The discretization intervals for GDS are
set to 0.2, 0.2, 0.2, 0.2, 0.8, 1.6(s) and the number of nodes
for randomized MPC is set to 4,200. In this case, the average
computation time for about 16(s) execution was 0.012(s) by
core i5 2.3GHz processor. The navigating functionN(q) for
static environment was aL1-based distance to the goal point,
which was obtained by wavefront propagation algorithm a
priori. It should be noted that, in the situation depicted in
Fig. 1, the navigating function for the static map is the same
as the simpleL1 distance. The cost function used at simula-
tion is

Ωg(p,u) = α ·n1(p,u)+ γ ·goal(p,u)+ δ ·n2(p,u),

that is. less terms than (2) are used. This means that the pa-
rameter tuning becomes easier than GDW. In addition, the
result is compared with those that the constant inputs are se-
lected in Fig. 2, where additionaldistance term is added to
the cost function. In Fig. 2, the line ”single T=2” means
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Fig. 2. Trajectories of the robot and the obstacle.

that the optimal constant input is searched in each time with
prediction horizonT = 2. From the Fig. 2, the robot based
on the proposed method starts avoiding maneuver as early as
T = 4, and pass the obstacle more quickly than others.

5 CONCLUSIONS

In this paper, an extension of Dynamic Window approach
is proposed for dynamic environment, and its effectiveness is
examind by numerical simulations. By admitting piecewise
constant input in the predicting and searching step, better per-
formances are obtained. In addition, by means of randomized
searching with GDS discretization, real-time calculation is
also possible. However, the obtained trajectory seems to be
nonsmooth and its modification is one of the future issues.
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