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Abstract: In this paper we investigate higher order systems of linear difference equations where the associated characteristic
matrix polynomial is self-inversive. We consider classes of equations with bounded solutions. It is known that stability properties
of higher order systems of linear difference equations are determined by the characteristic values of the corresponding matrix
polynomials. All solutions are bounded (in both time directions) if the spectrum of the corresponding matrix polynomial lies on
the unit circle, and moreover if the characteristic values of modulus one are semisimple. If the corresponding matrix polynomial
is self-inversive then one can use the inner radius of the numerical range to obtain a criterion for boundedness of solutions. We
show that all solutions are bounded if the inner radius is greater than 1. In the case of matrix polynomials with positve definite
coefficient matrices we derive a computable lower bound for the inner radius.

Keywords: linear difference equations, matrix polynomials, bounded solutions, self-inversive, inner radius, numerical range

1 INTRODUCTION
In this paper we investigate higher order systems of lin-

ear difference equations where the associated characteristic
matrix polynomial is self-inversive. We consider classes of
equations with bounded solutions.

Self-inversive polynomials and matrix polynomials have
been studied in the literature under various names includ-
ing reciprocal, self-reciprocal, palindromic and conjugate-
symmetric (see [1], [3], [8], [12]). There are applications in
numerous areas of engineering, for example, optimal design
of problems governed by hyperbolic field equations [12], the
study of line spectral pairs in speech coding [11], and ker-
nel representations of time-reversible systems [9]. Moreover,
such polynomials are used in applied mathematics to deal
with stability of periodic orbits of autonomous Hamiltonian
systems [10], and to investigate Lie algebras for semisimple
hypersurface singularities [7].

Only recently self-inversive matrix polynomials and cor-
responding linear differential and difference equations ap-
peared in the solution of discrete time linear quadratic op-
timal control problems [2], in the study of discretization
schemes for cubic Schrödinger equations [4] and in vibration
analysis of railway tracks for high-speed trains [5].

It is known that stability properties of higher order sys-
tems of linear difference equations are determined by the
characteristic values of the corresponding matrix polynomi-
als.

All solutions are bounded (in both time directions) if the
spectrum of the corresponding matrix polynomial lies on the
unit circle, and moreover if the characteristic values of modu-
lus one are semisimple (that is the corresponding elementary

divisors are linear). If the corresponding matrix polynomial
is self-inversive then one can use the inner radius of the nu-
merical range to obtain a criterion for boundedness of solu-
tions. We show that all solutions are bounded if the inner
radius is greater than 1. In the case of matrix polynomials
with positve definite coefficient matrices we derive a com-
putable lower bound for the inner radius. We illustrate our
results by examples.

2 PRELIMINARIES
Let γ be complex number with |γ| = 1 and

F0, F1, . . . , Fm complex hermitian n × n matrices satisfy-
ing

F ∗
j = γFm−j , j = 0, 1, . . . ,m,

detF0 ̸= 0, detFm ̸= 0. (1)

Consider the following higher order systems of linear differ-
ence equation:

Fmx(t+m)+Fm−1x(t+m− 1)+ · · ·+F0x(t) = 0, (2)

where {x(t)}∞t=−∞ is a sequence of vectors in Cn to be de-
termined. The associated characteristic matrix polynomial is
as follows:

F (z) = F0 + F1z + · · ·+ Fmz
m ∈ Cn×n[z]. (3)

The conjugate-reverse matrix polynomial of F (z) in (3) is
defined by

F̂ (z) = F ∗
m + · · ·+ F ∗

1 z
m−1 + F ∗

0 z
m.

Then it follows form (1) that F (z) = γF̂ (z) and thus F (z)
is γ-self-inversive.
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We use the following notation. If P (z) ∈ Cn×n[z] then
the set of characteristic values of P (z) is denoted by σ(P ) =
{λ ∈ C; detP (z) = 0}. A characteristic value λ of P (z) is
said to be normal if for any v ∈ Cn,

P (λ)v = 0⇐⇒ v∗P (λ) = 0.

A characteristic value λ of P (z) is said to be semisimple if
the corresponding elementary divisors are linear.

Let W (P ) = {λ ∈ C; v∗P (λ)v = 0 for some v ∈
Cn, v ̸= 0} be the numerical range of P (z). It is obvious
that σ(P ) ⊂ W (P ). We call ri(P ) = min{|λ|;λ ∈ W (P )}
the inner radius of P (z). IfH is hermitian then λmin(H) and
λmax(H) shall denote the smallest and the largest eigenvalue
ofH , respectively. Let ∥H∥ be the spectral norm ofH . Then
∥H∥ = max{|λmin(H)|, |λmax(H)|} and

∥H∥ ≥ −|λmin(H)|.

3 BOUNDEDNESS
In this section we deal with the boundedness for the dif-

ference equation (2). The equation (2) is said to be bounded
if any solution x(t) of (2) with initial conditions x(0) =

x0, x(1) = x1, . . . , x(m−1) = xm−1 is bounded for t→∞
and t→ −∞.

In the rest of this paper we assume that the associated
characteristic matrix polynomial F (z) to (2) has the form

F (z) = P (z) + γzrP̂ (z) (4)

for some r ≥ 0 and some P (z) =
∑k
j=0Ajz

j ∈ Cn×n[z].
Then F (z) is γ-self-inversive. Note that for any P (z) =∑k
j=0Ajz

j ∈ Cn×n[z] and any r ∈ Z, r ≥ 0, P (z) +
γzrP̂ (z) is γ-self-inversive.

We have the following fact (see [6]).

Proposition 1. Let F (z) be a self-inversive matrix polyno-
mial of the form (4) and suppose ri(P ) > 1. Then the char-
acteristic values of F (z) lie on the unit circle, and they are
normal and semisimple.

An immediate consequence of the preceding proposition
is the following.

Theorem 2. Let F (z) be a self-inversive matrix polynomial
of the form (4) and suppose ri(P ) > 1. Then, the difference
equation (2) is bounded.

The following theorem provides a computable lower
bound for the inner radius.

Theorem 3. Let the coefficientsAj , j = 0, . . . , k, of P (z) =∑k
j=0Ajz

j be hermitian and positive definite. Set

µ(P ) = min
{
λmin(AjA

−1
j+1); j = 0, . . . , k − 1

}
.

Then ri(P ) ≥ µ(P ).

Corollary 4. If A0 > A1 > · · · > Ak > 0 then µ(P ) > 1.

4 ROBUST BOUNDEDNESS
The difference equation (2) is said to be robustly bounded

if there exists ε > 0 such that for any hermitian matrices
F̃0, F̃1, . . . , F̃m satisfying

∥F̃j − Fj∥ < ε, F ∗
j = γFm−j , j = 0, 1, . . . ,m,

and for any initial conditions x(0) = x0, x(1) =

x1, . . . , x(m − 1) = xm−1 ∈ Cn, the solution of the dif-
ference equation

F̃mx(t+m) + F̃m−1x(t+m− 1) + · · ·+ F̃0x(t) = 0

is bounded for t→∞ and t→ −∞.
First, we consider the following difference equation in the

case of n = 1:

a0x(t+m) + a1x(t+m− 1) + · · ·
+ akx(t+m− k) + akx(t+ k) + · · ·

+ a1x(t+ 1) + a0x(t) = 0, m > 2k, (5)

where a0, a1, . . . , ak ∈ R (a0 ̸= 0) are given and {x(t)}∞t=0

is a sequence in R to be determined.
Assume a0 > a1 > · · · > ak > 0. Set

ε = min{ai − ai+1 | 0 ≤ i ≤ k − 1}. (6)

Suppose that ã0, ã1, . . . , ãk ∈ R satisfy

|ãi − ai| <
1

2
ε, i = 0, 1, . . . , k, (7)

and consider the difference equation

ã0x(t+m) + ã1x(t+m− 1) + · · ·+
ãkx(t+m− k) + ãkx(t+ k) + · · ·+

ã1x(t+ 1) + ã0x(t) = 0 (8)

and the associated characteristic matrix polynomial

f(z) = ã0 + ã1z + · · ·+ ãkz
k+

ãkz
m−k + · · ·+ ã1z

m−1 + ã0z
m. (9)

The condition (7) implies ã0 > ã1 > · · · > ãk. Thus by
Theorem 3.2 in [6] all zeros of f in (9) lie on the unit cir-
cle and simple, and hence for any initial conditions x(0) =

x0, x(1) = x1, . . . , x(m − 1) = xm−1 ∈ R the solution of
the equation (8) is bounded. Therefore the equation (5) is
robustly bounded.

Next, we consider the equation (2) with n × n matrices.
Suppose the matrices Mi = Ai−1 − Ai, i = 1, 2, . . . , k, are
positive definite. Set µi = λmin(Mi), i = 1, 2, . . . , k and
define µ = min{µi; i = 1, 2, . . . , k}. Then Mi ≥ µI > 0,
i = 1, 2, . . . , k.
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Lemma 5. Suppose A0 > A1 > · · · > Ak > 0. Let
Ã0, Ã1, . . . , Ãk be hermitian n× n matrices satisfying

∥Ãi −Ai∥ <
µ

2
, i = 0, 1, . . . , k.

Set Ãk+1 = 0. Then

Ãi−1 > Ãi, i = 0, 1, . . . , k + 1.

Proof. Set ∆i = Ãi −Ai. Then

Ãi−1 − Ãi = (Ai−1 −Ai) + (∆i−1 −∆i)

≥ µI + (∆i−1 −∆i).

We have

(∆i−1 −∆i) ≥ λmin(∆i−1 −∆i)I ≥ −∥∆i−1 −∆i∥I.

Moreover,

∥∆i−1 −∆i∥ ≤ ∥∆i−1∥+ ∥∆i∥ < µ.

Hence
(∆i−1 −∆i) > µI,

and we obtain Ãi−1 − Ãi > 0.

Using the preceding lemma and Proposition 2 we obtain
the following result.

Theorem 6. Let F (z) be a self-inversive matrix polynomial
of the form (4) and suppose that A0, A1, . . . , Ak are hermi-
tian with

A0 > A1 > · · · > Ak > 0. (10)

Then the difference equation (2) is robustly bounded.

5 EXAMPLE
Example 1. Consider the following difference equation with
n = 2:(

2 i

−i 3

)
x(t+ 3) +

(
1 0

0 1

)
x(t+ 2)

+

(
1 0

0 1

)
x(t+ 1) +

(
2 i

−i 3

)
x(t) = 0 (11)

The associated characteristic matrix polynomial F (z) is as
follows:

F (z) =

(
2 i

−i 3

)
+

(
1 0

0 1

)
z

+

(
1 0

0 1

)
z2 +

(
2 i

−i 3

)
z3 (12)

Setting

P (z) =

(
2 i

−i 3

)
+

(
1 0

0 1

)
z,

F (z) has the form (4) with γ = 1 and r = 2. Thus F (z) is
self-inversive. It is easy to see that the coefficients of F (z)
are hermitian matrices satisfying(

2 i

−i 3

)
>

(
1 0

0 1

)
> 0.

Therefore, it follows from Theorem 6 that the equation (11)
is robustly bounded.

We obtain that the spectrum of F (z) lies on the unit circle
and all characteristic values of F (z) are normal and semisim-
ple. In fact, one has

detF (z) = (z + 1)2

(
z2 −

(
1

2
−
√
5

10

)
z + 1

)
(
z2 −

(
1

2
+

√
5

10

)
z + 1

)
and all zeros of detF (z) lie on the unit circle (see Fig.1).
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Fig. 1. Characteristic values of (12)

Computing the Smith form S(z) of F (z), we obtain

S(z) =

(
z + 1 0

0 (z + 1)p(z)

)
where

p(z) =

(
z2 −

(
1

2
−
√
5

10

)
z + 1

)
(
z2 −

(
1

2
+

√
5

10

)
z + 1

)
.

Hence, it can be seen that all characteristic values of F (z)
are normal and semisimple.

Example 2. Consider the following diffrence equation with
n = 3:

A0x(t+ 3) +A1x(t+ 2)

+A1x(t+ 1) +A0x(t) = 0 (13)
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where

A0 =

 2 i −i
−i 3 0

i 0 3

 , A1 =

1 0 0

0 1 0

0 0 1

 .

The associated characteristic matrix polynomial F (z) is
given by

F (z) = P (z) + z2P̂ (z), P (z) = A0 +A1z. (14)

Then, it is easy to see that A0 and A1 are positive definite
hermitian matrices. Moreover, one has A0 ̸> A1, but A0 ≥
A1 because of det(zI − (A0 −A1)) = z(z − 2)(z − 3).

We compute the inner radius ri(P ). To do so, set v ∈
C, v ̸= 0. Then,

v∗P (λ)v =
(
ā b̄ c̄

)
P (λ)

ab
c

 = λ|v|2 + v∗A0v.

Thus ri(P ) = 1 because of det(zI − A0) = (z − 1)(z −
3)(z − 4).

We obtain

detF (z) = 12 + 19z + 27z2 + 53z3 + 49z4

+ 49z5 + 53z6 + 27z7 + 19z8 + 12z9

= (z + 1)3(z2 + 1)

(3z2 − 2z + 3)(4z2 − 3z + 4)

and thus it can be seen that all zeros of detF (z) lie on the
unit circle (see Fig.2).
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Fig. 2. Characteristic values of (14)

Computing the Smith form S(z) of F (z), we obtain

S(z) =

z + 1 0 0

0 (z + 1) 0

0 0 1
12 (z + 1)p(z)


where p(z) = (z2+1)(3z2−2z+3)(4z2−3z+4). Hence, the
spectrum of F (z) lies on the unit circle and all characteristic
values of F (z) are normal and semisimple. Therefore, (10)
is not nessesary for robust boundedness.
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