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Abstract: In this paper, we propose a modeling method for an uncertain system of a three-link RRR manipulator. We consider
that each rotation joint of this manipulator consists a nominal joint angle and uncertain joint angle. Though, the uncertainty
is treated as disturbance in the system that is maximum possible value of the uncertain joint angle. A relationship between
disturbance and the system structure in a state equation is clarified. Through the numerical example, we show the effectiveness
of our proposed method. It can apply our result to the general method of the robust control with structured uncertainty, such as
guaranteed cost control.
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1 INTRODUCTION

In the framework of the linear control system theory, the
design procedure for the controller is archived by a model
based method. But the numerical model only contains a nom-
inal characteristic of the plant. Thus, it is important problem
to obtain the representation of the effect of the uncertainty,
and use this information for the design of robust controller.
Chang et al. proposed the design method to guarantee the
existence of upper bound of performance index, which called
guaranteed cost control (GCC) [1]. Sato et al. consider the
trajectory generation problem for energy saving of the ma-
nipulator [2, 3]. Authors proposed a modeling method of a
linear time invariant system which includes an uncertainty
of the plant [4, 5]. And apply the uncertain system to GCC
problem. In [6], authors consider GCC problem in the case
with the system includes parameter variation in an output
matrix. The parameter setting of the free variable i in the
linear upper bound is available for adjustment of the closed-
loop system’s characteristic. In [7], authors consider a two-
link RR manipulator model case. Such a higher-dimensional
system, the effect of uncertainty to the disturbance becomes
larger bad influence than smaller dimension one, so that it
is not a negligible problem. The observer based method is
effective to reduce the effects of disturbance.

In this paper, we apply our modeling method to the three-
link RRR manipulator. In such a high dimensional system,
the effect of nonlinear element is larger than the lower di-
mensional system. It is important the robustness of the con-
troller.

2 DERIVATION OF THE UNCERTAIN SYSTEM
The dynamics of a three-link RRR manipulator is illus-

trated as a following second ordinary differential equation.

H(θ)�θ + Dθ̇ + η(θ̇, θ) + gγ(θ) = � (1)

where the inertia term is

H(θ) =




h11(θ) h12(θ) h13(θ)
h12(θ) h22(θ) h23(θ)
h13(θ) h23(θ) h33(θ)


 ,

the nonlinear term is

η(θ, θ̇) =




�11(θ̇, θ)
�21(θ̇,θ) � �22(θ̇,θ)
�31(θ̇,θ) � �32(θ̇,θ)


 ,

the dumping term is

D = diag(d1, d2, d3),

the gravity term and the input term are

γ(θ) =




1(θ)
2(θ)
3(θ)


 , � =




�1

�2

�3


 .

Here we derive the LTI system with structured uncertainty
for the above dynamics. In this system, the relationship be-
tween an uncertainty of the system and system structure is
expressed in the additional system matrix. Let us assume
that the each rotation joints include an angle of the nominal
element and an uncertain element. The possible value of the
uncertain joint angle is unknown, therefore we use the max-
imum value of the uncertain angle as a disturbance of the
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system to derive an uncertain system. The nominal system
structure is derived from the nominal joint angle, and the un-
certain system structure is derived corresponding to the un-
certain joint angle. The system uncertainty is only used to
derive the uncertain system, though in the later section of nu-
merical example, the simulation result is calculated by using
nominal LTI system.

2.1 Introduce of uncertainty
In this section, we introduce an uncertain angle in the each

joint to express the effect to the system structure. Here we
consider that the rotation angle �̄i(t) of jointi, (i = 1, 2, 3) is
constructed from an nominal joint angle �i(t) and uncertain
joint angle ∆�i.

�̄i = �i + ∆�i, (i = 1, 2, 3) (2)

where the uncertain joint angle ∆�i takes very small value, it
can be approximate sinusoidal functions sin, cos as

sin ∆�i → 0

cos ∆�i → ∆ci

Then, from the consideration of uncertainty of �̄i, from the
sinusoidal fundamental formulae, we have

sin �̄i = sin �i cos ∆�i + cos �i sin ∆�i

� ∆ci sin �i (3)

cos �̄i = cos �i cos ∆�i � sin �i sin ∆�i

� ∆ci cos �i (4)

In the term of �̄1 + �̄2, sin is becomes:

sin(�̄1 + �̄2) = sin �̄1 cos �̄2 + cos �̄1 sin �̄2

� ∆c1∆c2(sin �1 cos �2 + cos �1 sin �2) (5)

We consider the approximation of cos as follows

cos(�̄1 + �̄2) �
1
2
(∆c1 + ∆c2) cos(�1 + �2) (6)

Then, the term of �̄1(t) + �̄2(t) + �̄3(t) becomes

sin(�̄1 + �̄2 + �̄3)

� ∆c1∆c2∆c3(sin �1 cos �2 + cos �1 sin �2) cos �3

+
1
2
(∆c1 + ∆c2)∆c3 cos(�1 + �2) sin �3 (7)

The Taylor series expansion of Eqs. (3), (4), (5), (6) and
(7) near �i(t) = 0, (i = 1, 2, 3) up to the first-order are
express as follows:

sin �̄1 � ∆c1�1

cos �̄1 � ∆c1

sin �̄2 � ∆c2�2

cos �̄2 � ∆c2

sin �̄3 � ∆c3�3

cos �̄3 � ∆c3

sin(�̄1 + �̄2) � ∆c1∆c2(�1 + �2)

cos(�̄1 + �̄2) � 1
2
(∆c1 + ∆c2)

sin(�̄1 + �̄2 + �̄3) � ∆c1∆c2∆c3(�1 + �2)

+
1
2
(∆c1 + ∆c2)∆c3�3

By substituting these approximation terms into each elements
hij , (i = 1, 2, 3, j = 1, 2, 3) of the inertia term H(θ), The
first row elements are:

h̃11 = I1 + m1l
2
G1 + I2 + m2(l21 + l2G2 + 2∆c2l1lG2)

+ I3 + m3

(
l21 + l2G2 + l2G3 + 2∆c2l1l2

+ 2∆c3l2lG3 + (∆c2 + ∆c3)l1lG3

)

h̃12 = I2 + m2

(
l2G2 + ∆c2l1lG2

)

+ I3 + m3

(
l22 + l2G3 + ∆c2l1l2 + 2∆c3l2lG3

+
1
2
(∆c2 + ∆c3)l1lG3

)

h̃13 = I3 + m3

(
l2G3 + ∆c3l2lG3 +

1
2
(∆c2 + ∆c3)l1lG3

)

The second-row elements are:

h̃21 = h̃12

h̃22 = I2 + m2l
2
G2 + I3 + m3(l22 + l2G3 + 2∆c3l2lG3)

h̃23 = I3 + m3(l2G3 + ∆c3l2lG3)

The third-row elements are:

h̃31 = h̃13

h̃32 = h̃23

h̃33 = I3 + m3l
2
G3

As these results, the inertia term H(θ) is described as sym-

Table 1. Parameters of the Manipulator
Parameter Mean [unit]

mi Mass of Link [kg]

Ii Inertia moment of Link [kg·m2]

li length of Link [m]

lGi Distance from the Joint to the center
of gravity of the Link [m]

g Gravity [m/sec2]

metric matrix with constant elements.

H(θ) � H̃ =




h̃11 h̃12 h̃13

h̃21 h̃22 h̃23

h̃31 h̃32 h̃33


 (8)
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Next, we shall consider of the linearization of the gravity
term. The elements in the first-row are:

̃1 = � ∆c1

(
m1lG1 + m2(l1 + ∆c2lG2)

+ m3(l1 + ∆c2l2 + ∆c2∆c3lG3)
)
�1

� ∆c1∆c2

(
m2lG2 + m3(l2 + ∆c3lG3)

)
�2

� 1
2
(∆c1 + ∆c2)∆c3m3lG3�3

=
[

̃11 ̃12 ̃13

]
θ (9)

where

̃11 = � ∆c1

(
m1lG1 + m2(l1 + ∆c2lG2)

+ m3(l1 + ∆c2l2 + ∆c2∆c3lG3)
)

̃12 = � ∆c1∆c2

(
m2lG2 + m3(l2 + ∆c3lG3)

)

̃13 = � 1
2
(∆c1 + ∆c2)∆c3m3lG3

The second-row elements are:

̃2 = � ∆c1∆c2

(
(m2lG2 + m3l2) + ∆c3m3lG3

)
�1

� ∆c1∆c2

(
(m2lG2 + m3l2) + ∆c3m3lG3

)
�2

� 1
2
(∆c1 + ∆c2)∆c3m3lG3�3

=
[

̃21 ̃22 ̃23

]
θ (10)

where

̃21 = � ∆c1∆c2

(
m2lG2 + m3(l2 + ∆c3lG3)

)

̃22 = � ∆c1∆c2

(
m2lG2 + m3(l2 + ∆c3lG3)

)

̃23 = � 1
2
(∆c1 + ∆c2)∆c3m3lG3

The third-row elements are:

̃3 = � ∆c1∆c2∆c3m3lG3�1

� ∆c1∆c2∆c3m3lG3�2

� 1
2
(∆c1 + ∆c2)∆c3m3lG3�3

=
[

̃31 ̃32 ̃33

]
θ (11)

where

̃31 = � ∆c1∆c2∆c3m3lG3

̃32 = � ∆c1∆c2∆c3m3lG3 = ̃31

̃33 = � 1
2
(∆c1 + ∆c2)∆c3m3lG3 = ̃13

From Eqs. (9), (10) and (11), the linearized gravity term is
obtained as:

gγ(θ) � Γ̃θ(t), Γ̃ = g




̃11 ̃12 ̃13

̃21 ̃22 ̃23

̃31 ̃32 ̃33




2.2 Formulation of the uncertain system
Here we us assume that the derivative of the angle �̇i takes

vary small value, the product term becomes �̇i�̇j → 0, (i =
1, 2, 3, j = 1, 2, 3). Thus, it can ignore the nonlinear term in
Eq. (1). Let η(θ, θ̇) = 0

H(θ)�θ(t) + Dθ̇(t) + gγ(θ) = � (12)

Let us substitute Eqs. (8), (12), then

H̃�θ(t) + Dθ̇(t) + Γ̃θ(t) = � (13)

By multiplying H̃�1 from the left side to Eq.(13),

�θ(t) = �H̃�1Dθ̇(t) � H̃�1Γ̃θ(t) + H̃�1� (14)

From the above equation, we can compose the augmented
system as:
[

θ̇(t)
�θ(t)

]
=

[
O I

�H̃�1Γ̃ �H̃�1D

] [
θ(t)
θ̇(t)

]
+

[
O

H̃�1

]
�

By the definition of the state vector x(t) and the input vector
u(t) as:

x(t) =
[

θ(t)
θ̇(t)

]
=




�1(t)
�2(t)
�3(t)
�̇1(t)
�̇2(t)
�̇3(t)




, u(t) =




�1(t)
�2(t)
�3(t)




We can obtain the uncertain LTI system.

ẋ(t) = A(ξ)x(t) + B(ζ)u(t)

where state matrix A(�) and intput matrix B(�) are:

A(ξ) =
[

O I
�H̃�1Γ̃ �H̃�1D

]
, B(ζ) =

[
O

H̃�1

]

The uncertain system is express as A(ξ) and B(ζ). This
matrix is separates to a nominal elements A0, B0 and an un-
certain elements ∆A,∆B.

A(ξ) = A0 + ∆A (15)

B(ζ) = B0 + ∆B (16)

The structure of the nominal elements is express as A0, B0.
The structure of the uncertain elements Ai and Bi is defined
by uncertainty ∆�i where i = 1, 2, 3.

∆A =
3∑

i=1

�iAi, |�i| � 1 (17)

∆B =
3∑

j=1

ζjBj , |ζj | � 1 (18)

where �i and ζj are scalar values which express a scale of un-
certainty. Ai and Bj are matrices which expressed a structure
of the uncertainty.
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3 NUMERICAL RESULT
In this section, we show the numerical example that is

modeling method of the state and input matrix with struc-
tured uncertainty in the state equation. Each parameters takes
as in the table 2. The nominal system structure is obtained as

Table 2. Parameters (i = 1, 2, 3)
Parameter value Parameter value

mi 1.00 lGi 0.15
Ii 0.30 g 9.80

∆ci 0.03 di 0.03

follows:

A0 =


0.00 0.00 0.00 1.00 0.00 0.00
0.00 0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 0.00 1.00

74.34 �81.94 �14.42 �0.64 1.10 �0.16
�104.35 164.46 24.81 1.10 �2.05 0.44

10.77 �29.62 11.35 �0.16 0.44 �0.51




B0 =
[

0.00 0.00 0.00 21.26 �36.57 5.50
]T

State matrix and input matrix of the structured uncertainty
are:

A1 = 10�7 �


0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00

�3.72 4.09 0.36 0.00 0.00 0.00
5.22 �8.22 �0.62 0.00 0.00 0.00

�0.54 1.48 �0.28 0.00 0.00 0.00




A2 = 10�7 �


0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00

�9.1726 26.54 4.02 0.15 �0.27 0.06
17.277 �49.84 �7.44 �0.27 0.51 �0.10

�3.7671 9.30 1.02 0.05 �0.10 0.02




A3 = 10�7 �


0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.90 �1.12 0.56 �0.01 0.02 �0.01

�1.91 2.92 �0.84 0.02 �0.05 0.02
0.25 �1.76 �0.40 �0.01 0.02 �0.01




B1 = 06×1

B2 = 10�7 �
[

0.00 0.00 0.00 �4.86 9.13 �1.78
]T

B3 = 10�7 �
[

0.00 0.00 0.00 0.27 �0.66 0.27
]T

4 CONCLUSION
In this paper, we proposed the design method of uncer-

tain system of three-link RRR manipulator with parameter
variation in each joint angle. The relationship between an
uncertainty and system structure is clarified in the structured
uncertainty in the state matrix and input matrix of the state
differential equation. The numerical example will be shown
that the effectiveness of our method. Future study is to apply
GCC to our method to design a robust controller.
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