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Abstract: This paper deals with guaranteed cost control for a model helicopter which has 3-DOF (degree of freedom): the
elevation, pitch, and travel angles. One of main difficulties in designing a feedback controller for the helicopter is that the model
includes nonlinearities. In this paper, these nonlinearities are considered as the uncertainty terms. Guaranteed cost control is
applied not only to achieve the closed-loop stability but also to guarantee an adequate level of performance of the nonlinear
3-DOF model helicopter. A numerical example is shown to illustrate the effectiveness of the proposed method.
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1 INTRODUCTION

This paper deals with guaranteed cost control for a model
helicopter which has 3-DOF (degree of freedom): the eleva-
tion, pitch, and travel angles [1], [2]. One of main difficulties
in designing a feedback controller for the helicopter is that
the dynamics include nonlinearities.

Although single-input single-output approaches have ad-
vantages in simple structure, straightforward and so on, these
methods are difficult to consider uncertainties. Therefore,
development of multi-input multi-output control approaches
are widely applied, see e.g. [3], [4]. Moreover, avoiding dif-
ficulties in measurement of system state due to uncertainties,
an observer can be applied to reconstruct the system dynam-
ics [5].

In this paper, these nonlinearities are considered as the un-
certainty terms. By using Taylor’s expansion, the state equa-
tion of a nonlinear 3-DOF model helicopter is changed to
the form of a continuous-time uncertain system. Because the
presence of the uncertainties may cause instability and bad
performance on a controlled system, then guaranteed cost
control method is applied.

The objective of this paper is to propose a design method
of guaranteed cost control with a minimal order observer
for a 3-DOF model helicopter via linear matrix inequalities
(LMIs) feasible solutions.

Finally, a numerical example is given to illustrate the ef-
fectiveness of the proposed method and it is shown that a
3-DOF nonlinear model helicopter can be stabilized by the
guaranteed cost control method.

2 MODEL HELICOPTER

The dynamics of a 3-DOF model helicopter shown in Fig.
1. are described [1] as
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Fig. 1. A 3-DOF model helicopter

ẋp =



p1cosε+ p2sinε+ p3ε̇+ p4cosθv1
p5cosθ + p6sinθ + p7θ̇ + p8v2

p9ϕ̇+ p10sinθv1
ε̇

θ̇

ϕ̇


(1)

where pi, (i=1,...,10) are model helicopter constants; ε, θ, ϕ
are the elevation, pitch and travel angles and

xp =
[
ε̇, θ̇, ϕ̇, ε, θ, ϕ

]T
,

v1 = Vf + Vb, v2 = Vf − Vb,

Vf and Vb are voltages applied to the front and rear motor,
respectively.

3 PROBLEM STATEMENT
By using Taylor’s expansion, a 3-DOF nonlinear model

helicopter (1) can be expressed by the form

ẋ(t) = (A+∆A(t))x(t) + (B +∆B(t))u(t) (2)

y(t) = Cx(t), C = [O I3] (3)
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u(t) =

[
u1
u2

]
, u1 = v1 +

p1
p4
, u2 = v2 +

p5
p8

(4)

where

A = [aij ], (i, j = 1, ..., 6),

a11 = p3, a14 = p2, a22 = p7, a25 = p6,

a33 = −p1p10
p4

, a41 = a52 = a63 = 1,

B = [bij ], (i = 1, ..., 6, j = 1, 2),

b11 = p4, b21 = p8,

∆A = [δaij ], (i, j = 1, ..., 6),

δa11 = ∆A11, δa14 = ∆A14, δa15 = ∆A15,

δa22 = ∆A22, δa25 = ∆A25, δa33 = ∆A33,

δa35 = ∆A35,

∆B = [δbij ], (i = 1, ..., 6, j = 1, 2),

δb11 = ∆B11, δb22 = ∆B22, δb31 = ∆B31,

∆A11 = ∆p3,

∆A14 = p2(−
1

3!
x24 +O(x44)) + p1(−

1

2
x4 +O(x34)) + ∆p2,

∆A15 = p1(−
1

2
x5 +O(x35)), ∆A22 = ∆p7,

∆A25 = p5(−
1

2
x5 +O(x35)) + p6(−

1

3!
x26 +O(x46)) + ∆p6,

∆A33 = ∆p9,

∆A35 = −p1p10
p4

(− 1

3!
x25 +O(x45))−∆(p1p10/p4),

∆B11 = p4(−
1

2
x5 +O(x45)) + ∆p4,

∆B22 = ∆p8, ∆B31 = p10(x5 −
1

3!
x35 +O(x55)),

while other elements are zero, and x(t) ∈ ℜn is the state
vector, u(t) ∈ ℜr is the control input vector, y(t) ∈ ℜm is
the measured output vector, ∆pi denote uncertain terms of
pi, A, B, C are known constant real-valued matrices with
appropriate dimensions. Due to the system constraint, we
have the bounds of |ε|, |θ| and |ϕ| as εmax(= 0.3), θmax(=
0.3) and ϕmax(= 0.8).

Under the limitations of |ε|, |θ| and |ϕ|, matrices ∆A(t)

and ∆B(t) can be represented as

∆A(t) = DAFA(t)EA, ∆B(t) = DBFB(t)EB (5)

with

FTA (t)FA(t) ≤ I, FTB (t)FB(t) ≤ I

whereDA,DB ,EA,EB are constant real-valued known ma-
trices with appropriate dimensions, and FA(t) and FB(t) are
real time-varying unknown continuous and deterministic ma-
trices.

We assume that the initial state variable x(0) is unknown,
but their mean and covariance are known

E [x(0)] = m0 (6)

E
[
(x(0)−m0)(x(0)−m0)

T
]
= Σ0 > O (7)

where E [·] denotes the expected value operator.
The problem considered here is to design a guaranteed

cost controller with a minimal order observer so as to achieve
an upper bound on the following quadratic performance in-
dex

E [J ] = E

[∫ ∞

0

(xT (t)Qx(t) + uT (t)Ru(t))dt

]
< E [J∗]

(8)

associated with the uncertain system (2) where Q and R are
given symmetric positive-definite matrices.

4 GUARANTEED COST CONTROLLER DE-

SIGN
Design of a guaranteed cost controller is described in the

following equations. Here, a minimal order observer is given
by

ż(t) = Dz(t) + Ey(t) + Fu(t) (9)

x̂(t) = Pz(t) +Wy(t) (10)

with

D = A11 + LA21, PT +WC = I6,

F = TB, TA−DT = EC, A =

[
A11 A12

A21 A22

]
,

P =
[
I3 0

]T
, T =

[
I3 L

]
and a controller is assumed to have a form of

u(t) = Kx̂(t), K = −R−1BTS1 (11)

where S1 is a symmetric positive definite matrix.

Then, the following Theorem gives a design method of
guaranteed cost control to the 3-DOF model helicopter (2)-
(3).
Theorem 1. If the following matrix inequalities optimization
problem; min {γ0 + γ1 + γ2 + γ3 + γ4} subject to

Λ0 XT XEA XEA
∗ −Q−1 0 0

∗ 0 −α1I 0

∗ 0 0 −α4I

 < 0

(12)
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Λ̄0 G1 G2 G2 G3 G3 G4

∗ −R 0 0 0 0 0

∗ 0 −α5,invI 0 0 0 0

∗ 0 0 −α6,invI 0 0 0

∗ 0 0 0 −α3I 0 0

∗ 0 0 0 0 −α6I 0

∗ 0 0 0 0 0 −α4,invI


< 0

(13)
6∑
k=1

eT6kΘ0e6k < γ0,
3∑
k=1

eT3kΘ1e3k < γ1,

3∑
k=1

eT3kΘ2e3k < γ2,
3∑
k=1

eT3kΘ3e3k < γ3

(14)
−γ4 vT1 Y

T vT2 Y
T vT3 Y

T

Y v1 −S2

Y v2 −S2

Y v3 −S2

 < 0

(15)

where

Λ0 = AX +XAT −BR−1BT + (α2 + α3)DBD
T
B

+α1DAD
T
A + (α2,inv + α5,inv)BR

−1ETBEBR
−1BT ,

Λ̄0 = S2A11 +AT11S2 + Y A21 +AT21Y
T ,

Y = S2L, Z = [S2 Y ] , G1 = PTS1B,

G2 = ZDB , G3 = PTS1BR
−1ETB, G4 = ZDA,

Θ0 =
1

2
(S1(Σ0 +m0m

T
0 ) + (Σ0 +m0m

T
0 )
TS1),

Θ1 =
1

2
(S2Σ11 +Σ11S2), Θ2 =

1

2
(Y Σ21 +ΣT21Y

T ),

Θ3 =
1

2
(Y TΣ12 +ΣT12Y ), eik =

[
0Tk−1 1 0Ti−k

]T
,

Σ0 =

[
Σ11 Σ12

Σ21 Σ22

]
, Σ

1/2
22 = [v1,v2,v3]

has a solution S1 > 0, S2 > 0, X > 0, Y , Z, α1 > 0,
α2 > 0, α2,inv > 0, α3 > 0, α4 > 0, α4,inv > 0, α5,inv >

0, α6 > 0, α6,inv > 0, γ0, γ1, γ2, γ3, γ4 which satisfy the
relation α−1

2 = α2,inv, α−1
4 = α4,inv, α−1

6 = α6,inv and
S−1
1 = X , then the minimal order observer-based control

law (9)-(11) is a guaranteed cost controller which gives the
minimum expected value of the guaranteed cost

E [J∗] = E
[
xT (0)S1x(0) + ξT (0)S2ξ(0)

]
(16)

where ξ(t) = z(t) − Tx(t) is the estimated error of the
minimal order observer.

Remark 1: Since inequalities in (12) and (13) contain scalars
and matrices that satisfy inverse relations S−1

1 = X , α−1
2 =

α2,inv, α−1
4 = α4,inv, and α−1

6 = α6,inv. then an iterative
LMI algorithm is adopted to solve [6],[7].

5 A NUMERICAL EXAMPLE
The nominal values of the model helicopter are as follows:

p1 = [−(Mf +Mb)gLa +McgLc]/Jε,

p2 = [−(Mf +Mb)gLatanδa +McgLctanδc]/Jε,

p3 = ηε/Jε, p4 = KmLa/Jε, p5 = (−Mf +Mb)gLh/Jθ,

p6 = −(Mf +Mb)gLhtanδh/Jθ, p7 = −ηθ/Jθ,
p8 = KmLh/Jθ, p9 = −ηϕ/Jϕ, p10 = −KmLa/Jϕ,

δa = tan−1[(Ld + Le)/La], δc = tan−1(Ld/Lc),

δh = tan−1(Le/Lh), Jε = 0.86 kg m2, Jθ = 0.044 kg m2,

Jϕ = 0.82 kg m2, La = 0.62 m, Lc = 0.44 m,

Ld = 0.05 m, Le = 0.02 m, Lh = 0.177 m,

Mf = 0.69 kg,Mb = 0.69 kg, Mc = 1.67 kg,

Km = 0.5 N/V, g = 9.81 m/s2,

ηε = 0.001 kg m2/s, ηθ = 0.001 kg m2/s,

ηϕ = 0.005 kg m2/s,

and the uncertain parameters ∆p2, ∆p3, ∆p4, ∆p5, ∆p6,
∆p7, ∆p8, ∆p9 ∆(p1p10/p4) are 5% of each p2,p3, p4,
p5, p6, p7, p8, p9 and (p1p10/p4), respectively. Next,
DA, EA, DB , EB , m0, Σ0, R, Q are given as

DA =
[
dAij

]
, (i, j = 1, ..., 6)

dA11 =
√
| ∆A11 |, dA14 =

√
| ∆A14 |,

dA15 =
√
| ∆A15 |, dA22 =

√
| ∆A22 |,

dA26 = −
√
| ∆A25 |, dA33 = −

√
| ∆A35 |,

FA(t) = I6, EA =
[
eAij

]
, (i, j = 1, ..., 6)

eA11 =
√
| ∆A11 |, eA22 =

√
| ∆A22 |,

eA33 =
∆A33√
| ∆A35 |

, eA35 =
√
| ∆A35 |,

eA44 =
√
| ∆A14 |, eA55 =

√
| ∆A15 |,

eA65 =
√
| ∆A25 |

DB =
[
dBij

]
, (i = 1, ..., 6; j = 1, 2)

dB12 =
−∆B11√
| ∆B31 |

, dB21 =
√
| ∆B22 |,

dB22 = −
√
| ∆B22 | ×

√
| ∆B11 |√

| ∆B31 |
, dB32 =

√
| ∆B31 |

FB(t) = I2, EB =

[
−
√
| ∆B11 |

√
| ∆B22 |

−
√
| ∆B31 | 0

]
,

m0 = 06, Σ0 = 0.036I6, R = I2,

Q = diag(0.1, 0.1, 0.1, 1, 1, 1),

while other elements of dAij , eAij , and dBij are zero.
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Results of the controller gain K , the observer gain L and
the expected guaranteed cost E[J∗] are obtained below

K =

[
−2.4649 0.0078 0.0112 −0.1667 −0.0467 −0.0033

0.0433 −2.4787 7.2135 −0.1399 −3.0527 2.3029

]
,

L =

−2.9302 0.0574 −0.1278

0.0574 −2.3582 2.6908

−0.1278 2.6908 −7.6101

 , E[J∗] = 28.9098.

Figure 2 shows the transition of the guaranteed cost, and Fig.
3-5 show the trajectories of elevation, pitch and travel angles
with x(0) = [0 0 0 0.2 0.2 0.1]T .
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Fig. 2. Transition of the guaranteed cost
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Fig. 3. Trajectory of elevation angle ε
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Fig. 4. Trajectory of pitch angle θ
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Fig. 5. Trajectory of travel angle ϕ

6 CONCLUSION
This paper discusses a design method of guaranteed cost

control with a minimal order observer for a 3-DOF nonlinear
model helicopter via linear matrix inequalities (LMIs). The
results show the effectiveness of the proposed method.
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