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Abstract: We have proposed a model reference adaptive control scheme (conventional control scheme) for continuous time
single-input single-output linear systems with an input saturation in whichi-th derivatives of the output signal (i= 1, · · · , relative
degree) are available. In the conventional scheme, a condition for the initial states of the controlled object has to be satisfied.
In this paper, the main attention is focused on the relaxation of the condition. To achieve the objective, we propose an improve
adaptive control scheme. As a result of analyzing stability of the closed loop system using the improved adaptive control scheme,
a new condition for the initial states is derived. It should be emphasized that we can apply the new control scheme in a larger
region of initial states compared with the conventional one.
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1 INTRODUCTION
In practice, the values of the system parameters, that

are coefficients of dynamic equations describing behavior of
physical systems, vary due to aged deterioration or environ-
mental changes. For the systems, adaptive control schemes
[1]-[3] were useful. However, input saturation was ignored
in the early works. To overcome the problem, various adap-
tive control schemes have been developed for single-input
single-output (SISO) linear systems [4]-[16]. These schemes
guarantee boundedness of all signals in the closed loop sys-
tems. But most of them could not assure asymptotical sta-
bility of a tracking error between the output of the controlled
object and a desired trajectory. Although there exist some
schemes that can assure asymptotical stability of the track-
ing error, they have a problem that controlled objects are re-
stricted to asymptotically stable systems. Moreover, in all
proposed schemes, there exists a problem that a method to
improve tracking performance have not been provided.

To struggle against these problems, for the first step, the
authors proposed an adaptive output tracking control scheme
for SISO linear systems with an input saturation in which
full states can be measured [17]. The closed loop system
using the proposed controller has the following properties:
1) Stability of all signals in the closed loop systems can
be guaranteed; 2) Convergence of the tracking error to zero
is assured even for unstable controlled objects; 3) Setting
only one design parameter, the control performance can be
easily improved. For the next step, to decrease measure-
ment signals, forn-th degree systems with an input satu-
ration and the relative degreenr , we proposed an extended
scheme satisfying 1)-3) in whichi-th derivatives of output
signal (i = 1, · · · , nr ) are only required [18]. However, to
achieve the good properties 1)-3), the condition for the initial
states of the controlled object has to be satisfied.

In this paper, the main attention is to relax the condition
for the initial states derived in [18]. We propose an improved
adaptive controller for SISO linear systems with an input sat-
uration in which the output derivatives up to the order of rel-
ative degreenr are available. In the proposed adaptive con-
troller, it is shown theoretically that the same good proper-
ties 1)-3) can be assured under a new condition for the initial
states. Moreover, it can be shown theoretically that the im-

proved adaptive controller can be utilized in a larger region
of initial states compared with the adaptive control scheme
proposed in [18].

2 PROBLEM STATEMENT
In this paper, we consider the controlled objects described

by

Y(s)=
bmBp(s)

Ap(s)
F(s)+

Cp(s)

Ap(s)
Ap(s) = sn + an−1sn−1 + · · · + a1s+ a0
Bp(s) = sm + bm−1sm−1 + · · · + b1s+ b0
Cp(s) = cn−1sn−1 + · · · + c1s+ c0


(1)

whereAp(s)andBp(s)are coprime.f (u) = L[F(s)]−1 ∈ R is
a saturation function given by

f (u) =

 σ for u(t) > σ
u(t) for |u(t)| ≤ σ
−σ for u(t) < −σ

(2)

whereu(t) ∈ R is the control input and the positive constant
σ is an amplitude saturation level of the actuator.

The reference model is given by

YM(s) =
BM(s)
AM(s)

R(s)

AM(s) = snM + aM(nM−1)snM−1 + · · · + aM1s+ aM0
BM(s) = bMmM smM + · · · + bM1s+ bM0

 (3)

whereyM(t) = L−1[YM(s)] is the reference output,r(t) =
L−1[R(s)] is the reference input,AM(s) is Hurwitz polyno-
mia, andnM − mM ≥ n − m. The reference inputr(t) is a
deterministic signal given by

R(s)=
BR(s)
AR(s)

AR(s)= snr + aR(nr−1)snr−1 + · · · + aR1s+ aR0
BR(s)= bRmr s

mr + · · · + bR1s+ bR0

 (4)

whereAR(s) andBR(s)are known polynomials, andnr −mr ≥
0.
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Thetracking error is defined asye(t) = y(t) − yM(t). Then,
using the polynomials

Ap(s)= Apq(s)Bp(s) + Apr(s)
Apq(s) = sn−m+ aq(n−m−1)sn−m−1+ · · · + aq1s+ aq0

Apr(s) = ar(m−1)sm−1+ · · · + ar1s+ ar0

 , (5)

the following state space description can be derived [18].

ẋe(t) = Axe(t)+bmb
(
f (u)−cT

z z(t)−θT
r xr (t)+ϕ(t)

)
xe(t) =

[
ye(t), ẏe(t), · · · , ye(t)(n−m−1)

]T

A = A − baT
q, bT = [0, · · · ,0,1]

A =
[
0 I
0 0 · · ·0

]
, aT

q = [aq0, · · · ,aq(n−m−1)]

cT
z = [ar0, · · · ,ar(m−1)]

ẋr (t) = Ar xr (t), xr (0) = xr0


(6)

ż(t) = Azz(t) + hcT
x xe(t), z(0)= 0

Az =

[
0 I
−b0 −b1 · · · − bm−1

]
hT = [0, · · · ,0,1/bm], cT

x = [1,0, · · · ,0]

 (7)

Where ϕ(t) is an unknown bounded exponential damping
function,θr is an unknown parameter,Ar is known constant
matrix, andxr (t) ∈ RnM+nr is a known state with respect to
the reference model.

Using a known constant vectord ∈ Rn−m, the Hurwitz ma-
trix Ae is defined asAe = A− bdT. Then, defining the signal
ℓ(t) = cT

z z(t), the tracking error system (6) can be rewritten
as

ẋe(t) = Aexe(t) + bmb ( f (u)− q(t))
q(t) = θ(t)Tω(t) + ℓ(t), ℓ(t) = cT

z z(t)

θ(t)T =
1
ε

[
ϕ(t), θT

e , θr
]
, ε ≥ 1

ω(t)T = ε [−1, xe(t), xr (t)]

θe =
1
bm

(aq − d)


(8)

whereθ(t) andℓ(t) areunknown signals. The design param-
eterε is a positive constant. The design parameterε is intro-
duce to reduce the initial value∥θ(0)∥.

The controlled objective is that the tracking error becomes
asymptotically stable even if a controlled object is not asymp-
totically stable. To achieve the controlled objective, the fol-
lowing assumptions are made:

A1 Coefficients of polynomialsAp(s), Bp(s) andCp(s) are
unknown constants.

A2 The plant is minimal phase.
A3 Sign ofbm is known. It is assumed that the sign is posi-

tive hereafter.
A4 Relative degreen−m is known.
A5 y(t)(i) , i = 0, · · · ,n−m− 1 are available.
A6 There exists a known positive constantδz such thatAz =

Az + δzI is Hurwitz matrix.
A7 There exists bounded positive constantρM1 and ρM2

suchthat |θr xr (t) − ϕ(t)| ≤ ρM1 and∥xr (t)∥ ≤ ρM2.
A8 Therelationσ − ρM1 > 0 holds.
A9 Thesaturation levelσ is known.

The assumptions A1∼ A4 are the same assumptions made in
conventional adaptive control scheme. From the assumption
A2, Az becomes Hurwitz. Sinceϕ(t) is bounded exponen-
tial damping function, it is also seen that there exist positive
constantsρϕ, δϕ such that

∥∥∥ϕ̇(t)∥∥∥ ≤ ρϕ exp(−δϕt). The as-
sumptions A5∼ A9 are introduced to develop the adaptive
controller mentioned later. From the assumption A5, the sig-
nal xe(t) is available.

3 DEVELOPMENT OF ADAPTIVE CON-

TROLLER

3.1 Conventional adaptive controller

In [18], the controller developed under the assumptions
A1∼A9 is given by

u(t) = q̂(t) = θ̂(t)Tω(t) + ℓ̂(t)

θ̂(t) =
[
θ̂ϕ(t), θ̂e(t)T, θ̂r (t)

]T

 , (9)

˙̂θ(t) = −α3g(t)x̃e(t)T PbΓω(t), Γ > 0
˙̂ℓ(t) = −δzℓ̂(t) −

1
ρℓ
α3g(t)x̃e(t)T Pb, ℓ̂(0) = 0

x̃e(t) = xe(t) − x̂e(t)
˙̂xe(t) = Aex̂e(t) + α2x̃e(t), x̂e(0) = xe(0)
g(t) = 1− (1− β)(1− δẽ f(t)), 1 ≥ β > 0

δẽ f(t) =

{
1 for x̃e(t)T Pbf̃ (u) ≤ 0
0 for x̃e(t)T Pbf̃ (u) > 0

f̃ (u) = f (u)− u(t)


, (10)

whereθ̂ϕ(t), θ̂e(t) andθ̂r (t) are estimate values corresponding
to the unknown signalϕ(t)/ε and constantsθe/ε and θr/ε,
respectively.x̂e(t) andℓ̂(t) are estimates ofxe(t) andℓ(t), re-
spectively. The design parametersα andβ are positive con-
stants,Γ is a positive definite matrix. The design parameter
ρℓ is a positive constant satisfying

ρℓ ≤
δz
bm


(
4
α
+

6
ρê

) ∥cT
z hcT

x∥2

λmin[Q]
+

4∥cT
z Az∥2

ρzλmin[Qz]


−1

ρz =

(
4
α
+

6
ρê

)−1
λmin[Qz]

4
λmin[Q]
∥PzhcT

x∥2

ρê =
λmin[Q]

6

(
∥P∥
α

)−1


, (11)

whereα denotesa lower bound of the design parameterα
such thatα > α > 0, design parametersQ andQz are positive
definite matrices.P andPz are the solutions of the following
Lyapunov equations.

AT
e P+ PAe = −Q, Q > 0

AT
z Pz + PzAz = −Qz, Qz > 0

}
(12)

The estimated signal̂xe(t) and the design parameterα is in-
troduced to improve performance of the estimators forθ̂(t)
and ℓ̂(t). The design parameterβ is introduced to guarantee
tracking performance between the control input signalq̂(t)
and the ideal input signalqd(t) = θ(t)Tω(t)+ ℓ(t). The switch
functionδẽ f(t) is introduced to assure stability of the closed
loop system with the input saturation.

To show the property of the closed loop system, we define
the following Lyapunov function candidate

V(t) = V1(t) + ρv2V2(t)
V1(t) = α3x̃e(t)T Px̃e(t) + Ve(t)

+ρzz(t)T Pzz(t) + bmρℓℓ̃(t)2

+bmθ̃(t)TΓ−1θ̃(t)

V2(t) =
2ρϕ
√

bm

∥∥∥∥Γ− 1
2

∥∥∥∥
εδϕ

exp(−δϕt)

ρv2 =
V2(0)+

√
V2(0)2 + 4V1(0)

2
+ δv

ℓ̃(t) = ℓ(t) − ℓ̂(t), θ̃(t) = θ(t) − θ̂(t)


, (13)
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Ve(t) = ρêx̂e(t)
T Px̂e(t) (14)

whereθ̃(t) and ℓ̃(t) arethe parameter estimation errors, and
δv is a design parameter of a positive constant.

Define a input estimation errorq̃(t) asq̃(t) = qd(t)− q̂(t) =
θ̃(t)Tω(t) + ℓ̃(t). In the closed loop system using the conven-
tional adaptive controller, the following theorem holds [18].

Theorem 1 If the initial states satisfy

ρ2
v ≥ V(0)
= ρêxe(0)T Pxe(0)+ bmθ̃(0)TΓ−1θ̃(0)
+ρv2V2(0)

ρv =
1

2βρu3

{
− (ρu1 + βρu2)

+

√
(ρu1 + βρu2)

2 + 4(σ− ρM1)βρu3

}
ρu1 =

√
2max

{
∥θe∥2
ρêλmin[P]

,
∥cz∥2

ρzλmin[Pz]

}
ρu2 =

√
2
bm

max

 ερM2

λmin

[
Γ−

1
2

] , 1
√
ρℓ


+

ε
√

bmλmin

[
Γ−

1
2

]
ρu3 =

√
2

bmλmin
[
Γ−1

]
λmin[P]

max

{
1
α3
,

1
ρê

}



, (15)

in addition, the lower bound of the design parameterα is
given by

α2 ≥ 2bm∥θe∥
√

bT Pbλmin[P−1], (16)

the closed loop system using the controller (9) – (12) be-
comes stable, and the error signalsxe(t), x̃e(t), z(t), ℓ̃(t) and
q̃(t) converge to zero. When the design parameters are fixed
except for the design parameterα, the following relation
holds.

q̃(t)2 ≤ exp
(
−αρ̄q1t

)
q̃(0)2 + α−1ρ̄q2 (17)

Whereρ̄qi, i = 1,2 are bounded positive constants indepen-
dent of the design parameterα. �

From Theorem 1, we have the following remarks.

Remark 1 It is seen from Theorem 1 thatq̃(t) converges
to zero rapidly as the design parameterα increases. Then,
the control input signal (9) becomes close to the ideal input
u(t) = qd(t). Therefore, it can be expected that if the value
of the design parameterα is large enough, the oscillations
caused by the estimator of unknown parameters are hard to
occur in the control input signal.

Remark 2 Consider the case wheñq(t) converges to zero
rapidly. Sincexe(t) converges to zero, from the assumption
A8, it is seen that there existst1 ≥ 0 such that|q(t)| ≤ σ, t1 ≥
t. Then, fort ≥ t1, xe(t) converges to zero at the convergent
rate specified by the system matrixAe.

Remark 3 From (15),ρv becomes large as the desing pa-
rameterβ decreases. The upper bound ofρv is

lim
β→0
ρv =

σ − ρM1

ρu1
. (18)

Fromthis fact, it can be seen that if the condition

(σ − ρM1)2

2
min

(
λmin[P]
∥θe∥2

, K1K2

)
> xe(0)T Pxe(0)

K1=
λmin[Qz]λmin[Q]λmin[Pz]

16∥PzhcT
x∥2∥cz∥2

K2=
6

9+
λmin[Q]
∥P∥


(19)

is satisfied, for any initial condition of the parameter estima-
tion errorθ̃(0) andV2(0), there exist design parametersε, Γ,
andβ such that the first equation of (15) holds.

3.2 Improved adaptive controller
If the left side of the first equation in (19) can become

large, the region of the initial states satisfying Theorem 1
can be expanded. To achieve this, the Lyapunov function
candidate is redefined as (13) and

Ve(t) = xe(t)
T Pxe(t). (20)

Analyzing the derivative of (13) and (20), the improved adap-
tive controller is developed as (9) and

˙̂θ(t) = −α3g(t)xe(t)T PbΓω(t), Γ > 0
˙̂ℓ(t) = −δzℓ̂(t) −

1
ρℓ
α3g(t)xe(t)T Pb, ℓ̂(0) = 0

xe(t) = x̃e(t) +
1
α3

xe(t)
x̃e(t) = xe(t) − x̂e(t)
˙̂xe(t) = Aex̂e(t) + α2x̃e(t), x̂e(0) = xe(0)
g(t) = 1− (1− β)(1− δẽf (t)), 1 ≥ β > 0

δẽ f(t) =

{
1 for xe(t)T Pb f̃ (u) ≤ 0
0 for xe(t)T Pb f̃ (u) > 0

f̃ (u) = f (u)− u(t)



, (21)

where the design parameterρℓ satisfies

ρℓ ≤
δz

4bm

∥cT
z hcT

x∥2

λmin[Q]
+
∥cT

z Az∥2

ρzλmin[Qz]


−1

ρz =
λmin[Qz]

16
λmin[Q]
∥PzhcT

x∥2

 . (22)

Then, for the closed-loop system using the improved adaptive
controller, the following theorem holds.

Theorem 2 If the initial states satisfy

ρ2
vm
≥ V(0)
= xe(0)T Pxe(0)+ bmθ̃(0)TΓ−1θ̃(0)
+ρv2V2(0)

ρvm =
1

2βρu3

{
− (ρu1 + βρu2)

+

√
(ρu1 + βρu2)2 + 4(σ − ρM1)βρu3

}
ρm1 =

√
max

{
∥θe∥2
λmin[P]

,
∥cz∥2

ρzλmin[Pz]

}
ρm2 =

1
√

bm

max

ε(ρM2 + 1)

λmin

[
Γ−

1
2

] , 1
√
ρℓ


ρm3 =

1√
bmλmin

[
Γ−1

]
λmin[P]



, (23)
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the closed loop system using the controller (9), (12), (21),
and (22) becomes stable, and the error signalsxe(t), x̃e(t),
z(t), ℓ̃(t) andq̃(t) converge to zero. When the design param-
eters are fixed except for the design parameterα, there exist
the bounded positive constantρqi, i = 1, 2 independentof
the design parameterα satisfying (17). �
For the lack of space, the proof is omitted. �

From Theorem 2, it can be ascertained that the properties
stated in Remark 1 and Remark 2 hold. Moreover, we have
the following remark for initial states.

Remark 4 From (23),ρvm becomes large as the desing
parameterβ decreases. The upper bound ofρvm is

lim
β→0
ρvm =

σ − ρM1

ρm1
. (24)

Fromthis fact, it can be seen that if the condition

(σ − ρM1)2min

(
λmin[P]
∥θe∥2

, K1

)
> xe(0)T Pxe(0) (25)

is satisfied, for any initial condition of the parameter estima-
tion errorθ̃(0) andV2(0), there exist design parametersε, Γ,
andβ such that the first equation of (23) holds.

From Remark 3 and Remark 4, we have following fact. Com-
paring with the value of (19) and (25), since the parameterK2
becomesK2 < 1, it can be easily ascertained that the value of
the left hand side of (25) becomes at least two times larger
than and equal to the value of the left side of (19). This
means that the improved adaptive controller can be applied
to the larger region of the initial states compared with the
conventional one proposed in [18].

Therefore, it can be concluded that the improved adaptive
controller can achieve good properties mentioned in Remark
1 and Remark 2 and the relaxation of the condition of the
initial states.

4 CONCLUSION
In this paper, the main attention was to relax the condi-

tion for the initial states of the closed loop system using the
conventional adaptive control scheme proposed in [18], we
proposed the improved adaptive control scheme. Using the
proposed adaptive controller, it is shown theoretically that
the following properties can be achieved: 1) Stability of all
signals i the closed loop systems can be guaranteed; 2) The
tracking error can converges to zero even for unstable con-
trolled objects; 3) Tracking performance can be improved
by setting the only one design parameterα. Moreover, it
was shown that we can apply the improved adaptive control
scheme in the larger region of the initial states compared with
the control scheme proposed in [18].
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