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Abstract: This paper deals with a control scheme for underwater vehicle-manipulator systems with the dynamics of thrusters in
the presence of uncertainties in system parameters. We have developed a regressor-based adaptive and a robust controller that
overcome thruster nonlinearities, which cause an uncontrollable system. However, the structure of the adaptive controller is very
complex due to the feedforward terms including the regressors of dynamic system models, and the error feedback gains of the
robust controller with a good control performance are excessively high due to the lack of feedforward terms. In this paper we
develop an adaptive controller that uses radial basis function networks instead of the feedforward terms. The replacement leads
to a moderately high gain controller whose structure is simpler than that of the regressor-based adaptive controller.
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1 INTRODUCTION
Adaptive or robust control schemes for autonomous un-

derwater vehicles with manipulators, referred to as underwa-
ter vehicle-manipulator system (UVMS), have recently been
developed in the presence of uncertainties in system param-
eters [1, 2]. In a general type of UVMS, the vehicle is pro-
pelled by marine thrusters, whereas the manipulator is driven
by electrical motors. Despite such a different actuator sys-
tem, the existing control schemes in [1, 2] were designed
based on the dynamic system models without the thruster
dynamics to obtain a simply structured controller. In each
control scheme, furthermore, a high gain control system is
constructed in order to achieve a good control performance.
However, the vehicle propelled by marine thrusters generally
has a considerably slower time response than the manipula-
tor driven by electrical motors [2], and hence the high gains
may excite the ignored thruster dynamics, which degrades a
control performance and may even cause instability.

In order to overcome the problem, we have developed
a regressor-based adaptive controller for UVMS with the
thruster dynamics [3]. The adaptive control inputs are com-
posed of adaptive feedforward signals including the regres-
sors of the dynamic system models, and error feedback sig-
nals. Since the slow thruster dynamics is taken into consider-
ation in the controller development, the control performance
can be improved by the high gain feedback terms. However,
the structure of the adaptive controller is very complex due
to the regressors. On the other hand, we have developed a
robust controller where the adaptive term is removed com-
pletely [4]. Although it has a much simpler structure than
that of the adaptive controller, the removal leads to an ex-
cessively high gain controller, which may cause saturation or
oscillations in the control inputs, to achieve a good control
performance.

In this paper we develop an adaptive controller that uses
radial basis function (RBF) networks, a type of neural net-
work, instead of the adaptive terms including the regressors
(see Fig. 1). The replacement leads to a moderately high
gain controller whose structure is simpler than that of the
regressor-based adaptive controller [3].

2 UVMS MODEL
Consider an underwater vehicle equipped with a Dm link

manipulator with revolute joints. LetDv andDe be the num-
bers of dimensions for the vehicle’s and the manipulator end-

effector’s motions, respectively. We assume without loss of
generality that Dm = De.

As in [1, 5], the mathematical model of a UVMS with
thruster dynamics is expressed as

M(ϕ)ẍ(t) + f(ϕ, u)=J(ϕ)−T
[
R̄(ϕ)K̄D(v)v(t)

τm(t)

]
v̇(t) = −1

2
AD(v)v(t) +

1

2
Bτb(t)

(1)

M(ϕ) = J(ϕ)−T M̄(ϕ)J(ϕ)−1

f(·)=J(ϕ)−T [f̄(ϕ, u)−M̄(ϕ)J(ϕ)−1J̇(ϕ, u)u(t)]
D(v) = diag{|v1|, . . . , |vDv|}

 (2)

where D(·) ∈ RDv×Dv , vi(t) is the ith element of v(t), and
the explanation of the main symbols is shown in Table 1.

In this paper, the backstepping control technology is used
to develop an adaptive controller. To this end, the state v(t)
has to be replaced by the new one z(t) = D(v)v(t). Rewrit-
ing the signal D(v)v(t) as z(t) in the model (1), we obtain
the new representation

M(ϕ)ẍ(t) + f(ϕ, u) = H(ϕ)TK

[
z(t)
τm(t)

]
ż(t)=−AD(v)z(t)+BD(v)τb(t)

 (3)

H(ϕ) = R(ϕ)TJ(ϕ)−1

R(ϕ) =

[
R̄(ϕ) 0
0 Im

]
, K =

[
K̄ 0
0 Im

] (4)

where R(·), K ∈ RDn×Dn and Im ∈ RDm×Dm is an iden-
tity matrix.

The model (3) has the following properties useful for our
controller development [1, 5]:
P1) The diagonal elements of A, B and K̄ are positive
constants, and there exists a positive constant cB such that
cB∥ȳ∥2 ≤ ȳTBȳ for any ȳ ∈ RDv .

Control input
in this paper

Feedforward term Feedback term

Adaptive term 
including regressors + Error feedback term=

Control input
in ref. [3]

=Control input
in ref. [4]

Error feedback term

Adaptive term 
using RBF networks + Error feedback term=

Fig. 1. Comparison of our controllers
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Table 1. Symbols in the model (1)
Da Number of dimensions for vehicle’s orientation and manipulator’s

joint angles
Dn Number of dimensions Dv +De = Dv +Dm
x(t) Signal composed of vehicle’s and manipulator end-effector’s posi-

tions and orientations (∈ RDn)
ϕ(t) Signal composed of vehicle’s orientation and manipulator’s joint

angles (∈ RDa)
u(t) Signal composed of vehicle’s translational velocity and ϕ̇(t)

(∈ RDn)
τm(t) Joint torques of manipulator (∈ RDm)
J(ϕ) Jacobian matrix in the equation ẋ(t)=J(ϕ)u(t) (∈ RDn×Dn)
R̄(ϕ) Transformation matrix from thrust forces to force and torque con-

cerning inertial coordinate system (∈ RDv×Dv)
M̄(ϕ) Inertia matrix (∈ RDn×Dn)
f̄(·) Signal composed of centrifugal, Coriolis, gravitational and buoy-

ant forces, and fluid drag (∈ RDn)
v(t) Shaft velocities of thruster’s propellers (∈ RDv)
τb(t) Shaft torques of thruster’s propellers (∈ RDv)
A, B, Diagonal matrices composed of thruster’s system parameters
K̄ (∈ RDv×Dv)

P2) Each of J(ϕ) and R(ϕ) is composed of kinematic pa-
rameters and the functions of ϕ(t). Moreover, if each of J(ϕ)
and R(ϕ) has a full rank, then there exists a positive constant
cH2K such that cH2K∥x̄∥2 ≤ x̄TH(ϕ)TKH(ϕ)x̄ for any
x̄ ∈ RDn.
P3) If J(ϕ) has a full rank, thenM(ϕ) is symmetric and posi-
tive definite, and there exists a positive constant cM such that
∥M(ϕ)∥ ≤ cM .

3 CONTROLLER DESIGN
The control objective is to develop a controller so that all

the signals in the closed loop system can be bounded and the
state x(t) can track the desired trajectory xr(t) under the con-
dition that the dynamic and hydrodynamic parameters (e.g.,
mass and a drag coefficient) are unknown constants.

In order to meet the objective, we make the following as-
sumptions about the model (3) and the reference model (i.e.,
the desired trajectory xr(t)):
A1) The signals ϕ(t), x(t), u(t) and v(t) are available.
A2) The kinematic parameters in (3) (e.g., length) are known
constants.
A3) Each of the matrices J(ϕ) and R(ϕ) in (3) has a full
rank.
A4) The desired trajectory xr(t) and the derivatives ẋr(t),
ẍr(t) and x(3)r (t) exist and are bounded.
It follows from the property P2 and the assumptions A1 and
A2 that J(ϕ) and R(ϕ) are known matrices, and hence ẋ(t)
is available by using the equation ẋ(t) = J(ϕ)u(t).

In the following subsections we develop a controller that
achieves the control objective by using a two-step backstep-
ping procedure, as shown in Fig. 2. The first step is the de-
sign of an adaptive controller for the inputs z(t) and τm(t),
called Adaptive Controller I in this paper. The second step is
the design of an adaptive controller for the input τb(t), called
Adaptive Controller II in this paper. In this step we first re-
place z(t), determined in the first step, by the desired trajec-
tory zr(t), and then design the control input τb(t) so that z(t)
can track zr(t).
3.1 Adaptive Controller I

According to the design procedure shown in Fig. 2, we
make the following assumption in the design of Adaptive
Controller I:
A5) The control inputs are z(t) for vehicle control and τm(t)
for manipulator control.

In order to achieve the control objective described above,
we use the tracking errors

s̃(t) = ˙̃x(t) + αx̃(t), x̃(t) = x(t)− xr(t) (5)

where α > 0 is a constant design parameter. Using the first
equations of (3) and (5), we have the error models

M(ϕ) ˙̃s(t) = H(ϕ)TK

[
z(t)
τm(t)

]
− 1

2
Ṁ(·)s̃(t)

−H(ϕ)TKfx(nx)− x̃(t)
˙̃x(t) = −αx̃(t) + s̃(t)

 (6)

fx(nx) = K−1H(ϕ)−T {f(·)− 1

2
Ṁ(·)s̃(t)

−M(ϕ)[α ˙̃x(t)− ẍr(t)]− x̃(t)} (7)

where nx(·) ∈ R5Dn+Da is composed of ϕ(t), x(t), xr(t),
ẋr(t), ẍr(t) and u(t). In a subsequent analysis, the control
input z(t) will contain nx(t). Moreover, the time derivative
of z(t) (i.e., the time derivative of nx(t)) will have to be used
in the control input τb(t) of Adaptive Controller II. However,
the signal nx(t) includes u(t) whose time derivative is not
directly available, and hence we divide nx(t) into u(t) and
nx1(t) composed of ϕ(t), x(t), xr(t), ẋr(t) and ẍr(t) whose
time derivatives are directly available.

In this paper, the nonlinear term fx(nx) in the error model
(6) is replaced by the following RBF network and compen-
sated by Adaptive Controller I:

fx(nx) = Θxωx(nx) + δx(nx) (8)

where Θx ∈ RDn×Dx is a constant parameter, δx(nx) is an
approximation error, and ωx(·) ∈ RDx is a signal whose ith
element is given by

ωxi(nx) = e−∥nx(t)−n̄x1i∥2/n̄2
x2i (9)

where n̄x1i ∈ R5Dn+Da and n̄x2i ∈ R are constant design
parameters. In order to obtain an adequate approximation
accuracy, the network dimensions Dx is chosen to be suffi-
ciently high so that the following assumption can be satisfied:
A6) There exists a positive constant cδx such that ∥δx(nx)∥
≤ cδx for any nx(·) ∈ R̄x, where R̄x is a compact subset of
R5Dn+Da.
The assumption A6 is a reasonable assumption because it is
shown in [6] that an RBF network can approximate any con-
tinuous function on a compact set.

The adaptive control law for the error model (6) subject to
the assumptions A1 to A6 is given by[

z(t)
τm(t)

]
= Θ̂x(t)ωx(nx)− αH(ϕ)s̃(t) (10)

UVMS model
x

xr

x

z

(Vehicle control)

(Manipulator control)

r

Thruster 
model

z

z

τb

Step 2

z

τm

Step 1

UVMS model

Adaptive
Controller I

Adaptive
Controller IAdaptive

Controller II

(t)

(t)

τm(t)

(t)

(t)

(t)

(t)

(t)

(t)
(t)

x

xr

x

(t)

(t)
(t)

n

Fig. 2. Controller design procedure
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where Θ̂x(t), the estimate of Θx, is generated by the adaptive
law

˙̂
Θx(t) = −σx1Θ̂x(t)− σx2H(ϕ)s̃(t)ωx(nx)

T (11)

where σx1, σx2 > 0 are constant design parameters. It can be
shown that the adaptive controller (10) and (11) guarantees
an ultimate boundedness of the tracking error x̃(t).
3.2 Adaptive Controller II

According to the design procedure shown in Fig. 2, we
make the following assumption instead of the assumption A5
in the design of Adaptive Controller II:
A7) The control inputs are τb(t) for vehicle control and τm(t)
for manipulator control.

As shown in Fig. 2, we first replace the input z(t) in (10)
by the desired trajectory zr(t), i.e.,[

zr(t)
τm(t)

]
= Θ̂x(t)ωx(nx)− αH(ϕ)s̃(t) (12)

and then design Adaptive Controller II by using the track-
ing error of z(t). When we choose the error as the nor-
mal one z̃n(t) = z(t) − zr(t), the error model is written as
˙̃zn(t) = −AD(v)z(t)−żr(t)+BD(v)τb(t). This model has
a situation where the system is uncontrollable due to the lack
of the rank of BD(v) when some of vi(t) equal zero. This
situation is caused by the thruster nonlinearities. In order to
avoid the situation, we propose the following error instead of
the normal one z̃n(t):

z̃(t) = z(t)− zr(t) +
2

ϵ
l(v) (13)

l(v) = {Iv − E(v)} v̄(v)
E(v)=diag

{
e−|v1|, . . . , e−|vDv|

}
v̄(v)=[sgn(v1), . . . , sgn(vDv)]

T

 (14)

where v̄(·) ∈ RDv , E(·) ∈ RDv×Dv , Iv ∈ RDv×Dv is an
identity matrix, and ϵ > 0 is a design parameter. It should be
noted that l(v) is bounded for all v(t). As a result of adding
the term l(v), the error model of z̃(t) is expressed as

˙̃z(t) = BL(v)τb(t)−Bfz(nz)− Ī TKH(ϕ)s̃(t) (15)

L(v) = D(v) +
1

ϵ
E(v), Ī =

[
Iv
0

]
fz(nz)=B

−1[AL(v)z(t)−Ī TKH(ϕ)s̃(t) + ξ(t)
+Ī T {Y (u̇)y2(t)− αH(ϕ)J(ϕ)u̇(t)}]

ξ(t) = Ī T {y1(t) + ˙̂
Θx(t)ωx(nx)− αḢ(·)s̃(t)

−αH(ϕ)[J̇(·)u(t)− ẍr(t) + α ˙̃x(t)]}
y1(t)=−2 Θ̂x(t)Ȳ1(nx)ṅx1(t)

y2(t)=−2

 Ȳ2(nx)
T θ̂x1(t)
...

Ȳ2(nx)
T θ̂xDn(t)


Ȳ1(nx)=

 ω̄1(nx)[nx1(t)− n̄x111]T
...

ω̄Dx(nx)[nx1(t)− n̄x11Dx]T


Ȳ2(nx)=

 ω̄1(nx)[u(t)− n̄x121]T
...

ω̄Dx(nx)[u(t)− n̄x12Dx]T


Y (u̇)=

u̇(t)
T 0

. . .
0 u̇(t)T

 , ω̄i(nx)= ωxi(nx)

n̄2x2i



(16)

Θ̂x(t)=

 θ̂x1(t)
T

...
θ̂xDn(t)

T

, n̄x1i=[ n̄x11in̄x12i

]
(17)

where Ī ∈RDn×Dv , Y (·)∈RDn×(Dn)2 , n̄x11i ∈R4Dn+Da,
n̄x12i ∈ RDn, Ȳ1(·) ∈ RDx×(4Dn+Da), Ȳ2(·) ∈ RDx×Dn,
θ̂xi ∈ RDx, and ω̄i ∈ R. In the derivation of (15), we use
the equation

Θ̂x(t)ω̇x(nx, ṅx) = y1(t) + Y (u̇)y2(t), (18)
which is modified so that Θ̂x(t)ω̇x(·) in żr(t) can be sepa-
rated into the unavailable signal u̇(t) and the available ones
y1(t) and y2(t). It is noteworthy that the coefficient matrix
BL(v) of the input τb(t) in the error model (15) has a full
rank for all v(t), and hence the error model is controllable in
spite of the thruster nonlinearities.

The nonlinear term fz(nz) in the error model (15) is re-
placed by an RBF network in a way similar to the design
of Adaptive Controller I. For the replacement of a function
(e.g., y = f(x)) by an RBF network, it is necessary to iden-
tify not the structure but the arguments of a function replaced
(i.e., x of f(x)). In view of the fact that the arguments of the
unavailable signal u̇(t) are ϕ(t), u(t), v(t) and τm(t) (i.e.,
u̇(ϕ, u, v, τm)), it can be seen from the third equation of (16)
that the argument nz(t) of fz(nz) is composed of ϕ(t), u(t),
s̃(t), v(t), τm(t), y2(t) and ξ(t). The nonlinear term fz(nz)
is replaced by the following RBF network:

fz(nz) = Θzωz(nz) + δz(nz) (19)
where Θz ∈ RDv×Dz is a constant parameter, δz(nz) is an
approximation error, and ωz(nz) ∈ RDz is a signal whose ith
element is given by

ωzi(nz) = e−∥nz(t)−n̄z1i∥2/n̄2
z2i (20)

where n̄z1i ∈ R(Dn+3)Dn+Da+Dv and n̄z2i ∈ R are con-
stant design parameters. We make the following assumption
in common with the assumption A6:
A8) There exists a positive constant cδz such that ∥δz(nz)∥
≤ cδz for any nz(·) ∈ R̄z , where R̄z is a compact subset of
R(Dn+3)Dn+Da+Dv .

The adaptive control law for the error model (15) subject
to the assumptions A1 to A4, A7 and A8 is given by

τb(t) = L(v)−1[Θ̂z(t)ωz(nz)− αz̃(t)] (21)

where Θ̂z(t), the estimate of Θz , is generated by the adaptive
law

˙̂
Θz(t) = −σz1Θ̂z(t)− σz2 z̃(t)ωz(nz)T (22)

where σz1, σz2 > 0 are constant design parameters.
For Adaptive Controller I and II, the following theorem

holds:
Theorem 1 Consider the adaptive controller (11), (12), (21)
and (22) for the error models (6) and (15) subject to the as-
sumptions A1 to A4 and A6 to A8. This controller guarantees
that signals in the closed loop system are bounded, and that
the tracking error x̃(t) satisfies the inequality

∥x̃(t)∥2 ≤ ρ1 e−γαt +
ρ2
α2ϵ̄

(23)

where ρ1, ρ2 > 0 are positive constants, ϵ̄ = min{1, ϵ2},
and γ = min{cH2K/(2 cM ), 1, cB}.
Proof: We can prove Theorem 1 in a way similar to the
proofs of the main theorems in [3, 4].

4 SIMULATION EXAMPLE
In order to confirm the usefulness of the adaptive con-

troller (11), (12), (21) and (22), we performed numerical
simulations. Typical simulation results are presented in this
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paper. The UVMS simulated here was an underwater vehi-
cle with a two-link manipulator, as shown in Fig. 3. The
values of its system parameters (excepting thruster’s param-
eters) were the same as those used in [3, 4]. In this figure,
only the values of the main parameters are shown. The sys-
tem parameters of the thrusters were given by A = (1/T )I3,
B = (612.5/T )I3, K̄ = 0.0408I3, where I3 ∈ R3×3

is an identity matrix and T is a positive constant. These
values were determined so that the steady state responses
could be roughly the same as those of the experimental re-
sults in [7], whereas the transient responses are changed by
the parameter T . It should be noted that the time responses
of the thrusters become slower with an increase in the pa-
rameter T . The design parameters of the proposed adaptive
controller were chosen as α = 100, σx1 = σz1 = 0.01,
σx2 = σz2 = 1, ϵ = 10, Dx = Dz = 50, n̄x2i = n̄z2j = 3,
Θ̂xki(0) = Θ̂zhj(0) = 0 where Θ̂xki(·) and Θ̂zhj(·) are the
(k, i)th and the (h, j)th element of Θ̂x(·) and Θ̂z(·), respec-
tively. In addition, the design parameters n̄x1i and n̄z1j were
set as points into which the interval of each variable corre-
sponding to nx(t) and nz(t) is divided equally. Each of the
desired trajectories of the vehicle’s and the manipulator end-
effector’s position was set up along a straight path. Each of
the velocities was given by a filtered trapezoidal function. In
these simulations, the time at which each of the desired tra-
jectories reaches a target point was about 15 seconds. On the
other hand, the desired trajectory of the vehicle’s orientation
is selected to remain at the initial value.

In order to investigate an effect of thruster dynamics on a
control performance, we performed simulations using a con-
troller for UVMS without thruster dynamics, called Static
Controller in this paper. Static Controller is composed of
(11), (12) and the static model τb(t) = B−1Azr(t), which
is obtained from the second equation of (3) when ż(t) = 0.
Figure 4 shows the tracking errors of Static Controller for
T = 0.01, 0.1, 1. It is worth noting that an unstable robot
motion was observed when T > 1. It can be seen from this
figure that the tracking error increases with an increase in
the parameter T . This means that a slow thruster dynam-
ics degrades a control performance when Static Controller
is used. On the other hand, Fig. 5 shows the tracking er-
rors of the adaptive controller (11), (12), (21) and (22) for
T = 1, 10, 100. As shown in this figure, the tracking errors
are roughly the same and remain small in the three cases,
irrespective of the parameter T .

In order to compare the proposed adaptive controller with
the robust controller developed in [4], we performed simula-
tions using the robust controller. Figure 6 shows the tracking
errors of the adaptive and the robust controller for T = 1.
It can be seen from this figure that the tracking error of the
proposed adaptive controller is smaller than that of the robust
controller. It is noteworthy that the steady state error of the
adaptive controller is considerably reduced, particularly after
the desired trajectories reach the target points.
5 CONCLUSION

In this paper we developed an adaptive controller for un-
derwater vehicle-manipulator systems with thruster dynam-
ics. In the controller development we presented a new track-
ing error model that overcomes uncontrollability caused by
the thruster dynamics, and then designed the adaptive con-
troller with radial basis function networks. Furthermore, the
usefulness of the proposed controller was demonstrated by
the simulation results.
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