
 Withstanding Asymmetric Situations in
Distributed Dynamic Worlds

Peter S. Sapaty

Institute of Mathematical Machines and Systems
National Academy of Sciences

Glushkova Ave 42, 03187 Kiev, Ukraine
(Tel: +380-67-4199223; Fax: +380-44-5266457)
sapaty@immsp.kiev.ua, peter.sapaty@gmail.com

Abstract: A high-level ideology and technology will be revealed that can effectively convert any distributed system (manned,
unmanned, or mixed) into a globally programmable spatial machine capable of operating without central resources. Compact
mission scenarios in a special high-level language can start from any point, runtime covering & grasping the whole system or
its parts needed, setting operational infrastructures, and orienting local and global behavior. The approach offered can be
particularly useful for quick reaction on asymmetric situations and threats the world is facing, paving the way to massive use of
cooperative robotics and gradual transition to unmanned systems for solving critical problems in unpredictable environments.

Keywords: distributed dynamic worlds, asymmetric situations and threats, Spatial Grasp Technology, Distributed Scenario
Language, parallel networked interpretation, multi-robot systems.

1 INTRODUCTION

In our modern dynamic world we are meeting numerous
irregular situations and threats where proper reaction could
save lives and wealth and protect critical infrastructures. For
example, no secret that world powerful armies with traditional
system organizations are often losing to terrorists, insurgents
or piracy with primitive gadgets but very flexible structures
making them hard to detect and fight. And delayed reaction to
earthquakes or tsunamis is a result of inadequacy of system
organizations too.

A novel philosophy and supporting high-level networking
technology will be described that can quickly react on
irregular situations and threats and organize any available
human and technical resources into operable systems
providing global awareness, pursuing global goals and self-
recovering from damages.

The approach allows us at runtime, on the fly, formulate
top semantics of the needed reaction on asymmetric events in
a special Distributed Scenario Language (DSL), shifting most
of traditional organizational routines to automated up to fully
automatic implementation, with effective engagement of
unmanned systems.

The details of this technology, based on gestalt and holistic
principles [1] rather than traditional multi-agent organizations
[2, 3] will be revealed in this paper, with explanation of
different DSL scenarios that can be effectively executed by
self-organized robotic groups. These scenarios include
collective navigation of distributed spaces, coastline patrols,
outlining and impacting forest fire zones, and swarm-against-
swarm solutions where highly organized robotic swarms can
fight another, manned, groups related, say, to piracy intrusions.

The technology offered provides a unified solution to
human-robot interaction and multi-robot behaviors just as a
derivative of parallel and distributed interpretation of system
scenarios in DSL.

2 TRADITIONAL SYSTEM ORGANIZATIONS
AND THEIR PROBLEMS

2.1 From system structure to system function
The traditional approach to system design, development

and management is when the system structure and system
organization are primary, created in advance, and global
function with overall behavior are secondary, as in Fig. 1.

Fig. 1. Traditional approach to system design

Typical examples of the traditional approach are multi-

agent organizations [2, 3], where global system behavior is
the result of work and interaction of predetermined parts
(agents). In this respect we can name the 4D/RCS Model
Architecture [4], with its block diagram shown in Fig. 2.

Fig. 2. 4D/RCS model architecture

4D/RCS prescribes a hierarchical control principle,

where commands flow down the predefined hierarchy, and
status feedback and sensory information flows up. Large

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12),
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 24

amounts of communication may also occur between nodes at
the same level, particularly within the same subtree of the
command tree. Future Combat Systems (FCS) project [5] was
ideologically and technologically based on this organizational
(as well as artificial intelligence) hierarchical model.

2.2 The problems with classical organizations
The related systems, where we first formalize and build the

system structure and organization and then try to get from
these the global behavior needed, are usually static, and may
often fail to adapt to highly dynamic and asymmetric
situations. If the initial goals change, the whole system may
have to be partially or even completely redesigned and
reassembled. Adjusting the already existing system to new
goals and functionality needed may result in a considerable
loss of system’s integrity and performance.

3 AN ALTERNATIVE: THE SPATIAL GRASP
TECHNOLOGY (SGT)

3.1 SGT basic idea
Within the approach offered (also known as

“overoperability” [6, 7] in contrast to the conventional
interoperability) the global function and overall behavior are
considered, as much as possible, to be primary. Whereas
system structure and organization (command and control
including) are secondary, with the latter as a derivative of the
former, as in Fig. 3.

Fig. 3. SGT basic idea of system creation and organization

The advantages of this (actually, the other way round)

approach include high potential flexibility of runtime system
creation and organization, especially in quick responses to
asymmetric events, and enhanced opportunities for automated
up to fully automatic (unmanned) solutions.

3.2 Parallel spatial grasp of distributed worlds
SGT is based on a formalized wavelike seamless

navigation, coverage, penetration, and grasping of distributed
physical and virtual spaces, as shown in Fig. 4.

 a) b)

Fig. 4. Incremental integral grasping of distributed worlds: a)
virtual interpretation, b) symbolic physical analogy

This top mode of system vision has strong psychological

and philosophical background, reflecting, for example, how

humans (top commanders) mentally plan, comprehend, and
control complex operations in distributed environments.

3.3 Distributed scenario interpretation
The approach in practice works as follows. A network

of universal control modules U, embedded into key system
points, collectively interprets system scenarios expressed in
DSL, as shown in Fig. 5. System scenarios, based on the
spatial grasp idea (representing any parallel and distributed
algorithms, spatial cycles including), can start from any
node, subsequently covering the system at runtime.

Fig. 5. Scenario execution in dynamic environments

DSL scenarios are very compact and can be created on

the fly. Different scenarios can cooperate or compete in a
networked space (depending on real control or distributed
simulation mode) as overlapping fields of solutions. Self-
spreading scenarios can also create runtime knowledge
infrastructures distributed between system components
(robots, sensors, humans). These infrastructures can
effectively support distributed databases, command and
control, situation awareness, and autonomous decisions, as
well as any other computational or control models.

More details on the SGT, its core language DSL, and its
distributed interpreter can be found elsewhere [8-16], with
some key features (necessary for explanation of the chosen
here applications) being briefed in the following sections.

4 DISTRIBUTED SCENARIO LANGUAGE, DSL

DSL differs radically from traditional programming
languages. It allows us to directly move through, observe,
and make any actions and decisions in fully distributed
environments. DSL directly operates with:

• Virtual World (VW), finite and discrete, consisting of
nodes and semantic links between them.

• Physical World (PW), infinite and continuous, where
each point can be identified and accessed by physical
coordinates.

• Virtual-Physical World (VPW), finite and discrete,
similar to VW but associating virtual nodes with
certain PW coordinates.

4.1 DSL basic features
Any sequential or parallel, centralized or distributed,

stationary or mobile algorithm operating with information
and/or physical matter can be written in DSL on a high
level. Its top level recursive structure is shown in Fig. 6.

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12),
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 25

Fig. 6. DSL top level syntax

DSL main features may be summarized as follows:

• A DSL scenario develops as parallel transition between
sets of progress points (props).

• Starting from a prop, an action may result in other props.
• Each prop has a resulting value and a resulting state.
• Different actions may evolve independently or

interdependently from the same prop.
• Actions may also spatially succeed each other, with new

ones applied in parallel from all props reached by the
previous actions.

• Elementary operations may directly use values of props
obtained from other actions whatever complex and
remote.

• Any prop can associate with a node in VW or a position
in PW, or both -- when dealing with VPW.

• Any number of props can simultaneously link with the
same points of the worlds.

• Staying with the world points, it is possible to directly
access and impact local world parameters, whether virtual
or physical.

4.2. DSL rules
The basic construct, rule, of the language can represent any

action or decision and can, for example, be as follows (this list
is far from being complete):

• Elementary arithmetic, string or logic operation.
• Hop in a physical, virtual, or combined space.
• Hierarchical fusion and return of (remote) data.
• Distributed control, both sequential and parallel.
• A variety of special contexts for navigation in space,

influencing operations and decisions.
• Type or sense of a value, or its chosen usage, guiding

automatic interpretation.
• Creation or removal of nodes and links in distributed

knowledge networks.

4.3 Spatial variables in DSL
Working in fully distributed physical or virtual

environments, DSL has different types of variables, called
spatial, effectively serving multiple cooperative processes:
• Heritable variables – these are starting in a prop and

serving all subsequent props, which can share them in

both read & write operations.
• Frontal variables – are an individual and exclusive

prop’s property (not shared with other props), being
transferred between the consecutive props, and
replicated if from a single prop a number of other
props emerge.

• Environmental variables – are accessing different
elements of physical and virtual words when
navigating them, also a variety of parameters of the
internal world of DSL interpreter.

• Nodal variables – allow us to attach an individual
temporary property to VW and VPW nodes, accessed
and shared by all props associated with these nodes.

These variables allow us to create spatial algorithms
working in between components of distributed systems
rather than in them, thus allowing for highly flexible,
robust and capable of self-recovery solutions, even though
different components may fail indiscriminately. Such
algorithms can freely move in distributed processing
environments (partially or as an organized whole), always
preserving global integrity and overall control.

Traditional abbreviations of operations and delimiters
can be used too, substituting some rules, as in following
examples throughout this text, in order to shorten DSL
programs (but always remaining within the general
recursive syntactic structure shown in Fig. 6).

5 THE DSL INTERPRETER

5.1 Distributed interpreter organization
The DSL interpreter consists of specialized modules

(which can work in parallel) handling and sharing specific
language interpretation data structures [10, 13-16]. The
network of the interpreters (the latter encircled as modules
U in Fig. 7) can be mobile and open, changing the number
of nodes and communication structure at runtime.
Communicating copies of the interpreter can be concealed,
if needed (say, for operation in hostile environments).

The heart of the distributed interpreter is its spatial track
system. The dynamically crated track forests are used for
supporting (or removing) spatial variables and echoing and
merging different types of control states and remote data.

Fig. 7. Networked DSL interpreter organization

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12),
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 26

Being self-optimized in the echo processes, the track
forests are dynamically covering the systems in which DSL
scenarios evolve, keeping the overall parallel and distributed
process integrity as well as local and global control. They also
route further grasps to the positions in physical, virtual or
combined spaces reached by the previous grasps, uniting them
with the frontal variables left there by preceding grasps.

5.2 Integrating interpreter with usual robotic functionality
Installing DSL interpreters (as universal modules U, see

Fig. 8) into mobile robots (ground, aerial, surface, underwater,
space, etc.) allows us to organize effective group solutions
(incl. any swarming) of complex problems in distributed
physical spaces in a clear and concise way, effectively shifting
traditional management routines to automatic levels. Human-
robot interaction and gradual transition to fully unmanned
systems are essentially assisted too.

Fig. 8. Examples of cooperative robotic scenario skeletons

Any groups of manned-unmanned devices with DSL

interpreters implanted into them, with any communication
networks in between, can serve as universal spatial machines
capable of doing any jobs together, under a unified control
automatically emerging from high-level DSL scenarios.

6 EXAMPLE OF SEMANTIC, TASK LEVEL

By embedding DSL interpreters into robotic vehicles we
can task them on a higher, semantic level, skipping numerous
traditional details of management of them as a group -- fully
delegating these to an automatic solution. An exemplary
semantic level tasking may be as follows.

Go to physical locations of the disaster zone with
coordinates: (x1, y1), (x2, y2), (x3, y3); evaluate radiation
level at each location; return its maximum value with attached
exact coordinates of the respected location to the
headquarters; and launch from the latter a massive cleanup
operation at this location.

The DSL program will strictly follow this scenario:

Location = maximum(move(x1_y1, x2_y2, x3_y3);
 attach(evaluate(radiation), WHERE));
move(Location[2]); massive_cleanup(radiation)

This (inherently parallel and fully distributed) scenario
can be executed with any available number of mobile
robots (practically from one to four), and the number of
robots may change at runtime. Distributed DSL interpreter
automatically creates the needed operational and command
and control infrastructures of the robotic group and
guarantees full task execution under any variations [8, 9].

7 PATROLLING COASTAL WATERS

This scenario may be suitable for both surface and
varying depth underwater search of intrusions in the
coastline zone, but for simplicity we will be assuming here
only two dimensional space to be navigated.

At the beginning let us create a coastal waypoint map in
the form of a semantic network, as in Fig. 9 (where r is
chosen as an arbitrary name of links between the nodes-
waypoints). The corresponding DSL solution is as follows.

Fig. 9. Coastal waypoint map

create(
 #x1_y1; +r#x2_y2; +r#x3_y3; ... +r#x9_y9)

A single USV (or UUV) solution repeatedly navigating
all coastal area by the map created is shown in Fig. 10 and
DSL program that follows (searching the water space for
alien objects by the depth available by vehicle’s sensors).

Fig. 10. Patrolling coastal waters with a single vehicle

move(hop(x1_y1)); R = +r;
repeat(repeat(move(hop(R));
 check_report(depth)); invert(R))

Two-vehicle parallel solution is shown in Fig. 11 and by

the following program, with vehicles are moving according
to the coastal map independently, assuming each having
embedded automatic procedures for avoiding possible
collisions with the other vehicle.

Fig.11. Patrolling coastal waters with two vehicles

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12),
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 27

(move(hop(x1_y1)); R = +r),
(move(hop(x9_y9)); R = -r);
repeat(repeat(move_avoid(hop(R));
 check_report(depth)); invert(R))

Another solution for the two-vehicle case may be when
each vehicle turns back if discovers another patrol vehicle on
its way, checking for this its vicinity by depth2).

(move (hop(x1_y1)); R = +r),
(move (hop(x9_y9)); R = -r);
repeat(repeat(none(depth2); move(hop(R));
 check_report(depth)); invert(R))

For the both latter cases, the whole coastline will always be

searched in full if at least a single vehicle remains operational.

8 BATTLING FOREST FIRES

We will consider a solution where distributed physical
space is randomly searched by simultaneous propagation of
multiple reconnaissance units, which when discover
irregularities (e.g. forest fires) move further and encircle
respected zones, collect their perimeter coordinates, transfer
them to the headquarters (HQ), and ultimately initiate massive
impact on the zones under fire.

The zones with fires and initial positions of reconnaissance
units are shown in Fig. 12a, and intermediary positions of
robotic unites moving randomly-oriented (repeatedly shifting
their positions within certain coordinate sector) are in Fig. 12b.

a) b)

Fig.12. Initial scenario injection (a) and robots movement (b)

After detecting fire locations, the reconnaissance units that
reached them begin moving around the fire zones, having
initially randomly chosen the encirclement orientation (i.e.
clockwise or anticlockwise). In each step they accumulate
coordinates of the periphery of fire zones, and upon
termination of the encirclement send the completed zone
coordinates to the headquarters (HQ). Getting the latter, the
HQ is launching a massive direct impact on the zones outlined,
as shown in Fig. 13, which may be manned, unmanned, or
mixed. The full DSL scenario for this task may be as follows.

move(HQ); create_nodes(1,2,3,4,5,6);
repeat(shift(random(limits));
 if(check(fire),
 (Zone = WHERE; Direction =
 random(clockwise, anticlockwise);

 repeat(
 move_around(fire, Direction, depth);
 append(Zone, WHERE);

 if(distance(WHERE,Zone[1])<threshold,
 (hop(HQ); impact(Zone); done)))))

Fig.13. Encircling fire zones followed by global impact

Other interpretations of this scenario may be dealing

with radiation zones, environment pollution, zones of
terrorist activities, zones of fish concentration, etc., with
aerial, ground, surface or underwater robots engaged.

9 SWARM AGAINST SWARM SCENARIO

As a more complex scenario example in DSL we will
consider here the case where an unmanned swarm is
opposing other (possibly, manned) group/swarm, as in Fig.
14. This may relate, for example, to fighting piracy in
maritime environment where aerial, surface and
underwater unmanned vehicles, working cooperatively
under a unified control, can be used for withstanding this
negative activity taking place worldwide.

Fig. 14. Fighting group targets with unmanned swarms

Main features of this scenario are as follows:

• Initial launch of the swarmed chasers (shown in red in
Fig. 14, with DSL interpreters embedded, which can
communicate with each other) into the expected piracy
area.

• Discovering targets and forming their priority list by
their positions in physical space where maximum
priority is assigned to topologically central targets as
potential control units of the intruders.

• Other targets are sorted out by their distance from the
topological center of their group, estimated previously.

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12),
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 28

• Most peripheral targets (those in maximum distance from
the topological center, as potentially having more chances
to escape, are being of higher priority too.

• Assigning available chasers to targets, classifying them as
engaged, with chasing and neutralizing targets, and
subsequently returning them into status free after
performing mission.

• The vacant chasers are again engaged in the targets
selection & impact.

This entire advanced swarm-against-swarm scenario may
be expressed in DSL in a very compact form, as follows.

frontal(Next);
sequence(
 start_launch(all_free_chasers,targets_area),
 repeat(
 hop(any_free_chaser);
All_targets = merge(hop(all_free_chasers);
coordinates(targets_seen));
nonempty(All_targets);
Center = average(All_targets);

 List = min_max_sort(split(All_targets);
 attach(distance(VALUE,Center),VALUE);
 List = append(withdraw(List, last), List);
 loop(nonempty(List); Next =
 element(withdraw(List, first), second);
 Chaser =
 element(min(hop(all_free_chasers);
 attach(distance(WHERE,Next),ADDRESS),
 second);
 release(hop(Chaser); STATUS = engaged;
 pursue_investigate_neutralize(Next);
 STATUS = free))));

It is worth noting that all the chaser swarm management
expressed or automatically induced by the above program is
done exclusively within the swarm itself, without any external
intervention, which dramatically simplifies external control of
this multi-robot operation.

10 CONCLUSION

A brief summary of advantages of the approach offered
may be as follows.

• The Spatial Grasp ideology and technology can
dramatically simplify application programming in
distributed dynamic systems.

• Setting multi-robot solutions in DSL may often be
comparable in complexity to routine data processing in
traditional languages.

• External management of multi-robot systems may not
depend on the number of components in them due to their
internal self-organization and automatic command and
control inside robotic groups.

• Formalization of mission scenarios in DSL can make
human-robot interaction and transition to fully unmanned
systems natural and straightforward.

• Spatial swarm intelligence in DSL can successfully
compete with human collective intelligence,
outperforming the latter in time critical situations.

In addition to the features listed above, we can state that
in comparison with other systems, DSL interpreter
represents an embedded universal intelligence common to
all applications. Any scenario can be executed by a
network of such intelligences. In other approaches, most of
the system intelligence has to be programmed explicitly for
each application, thus enormously complicating mission
planning and management.

All communications among unmanned units, also
between manned and unmanned ones, are on a high,
semantic level in DSL. They are very compact (often
hundreds times shorter than in other languages) which may
be essential for maritime (especially underwater)
operations with casual and limited data channels.

REFERENCES

[1] Wertheimer M (1924), Gestalt theory, Erlangen, Berlin
[2] Minsky M (1988), The society of mind, Simon and

Schuster, New York
[3] www.wikipedia.org/wiki/Multi-agent_system
[4] 4D/RCS: A reference model architecture for unmanned

vehicle system, version 2.0 (2002), Report NIST
[5] Feliciano CN (2009), The army's future combat system

program (Defense, Security and Strategy Series), Nova Science
Pub Inc.

[6] Sapaty PS (2002), Over-operability in distributed
simulation and control, The MSIAC's M&S Journal Online,
Winter Issue, Volume 4, No. 2, Alexandria, VA, USA

[7] Sapaty P (2009), The over-operability organization of
distributed dynamic systems for asymmetric operations, Proc.
IMA Conference on Mathematics in Defence, Farnborough, UK

[8] Sapaty P (2011), Spatial grasp technology for high-level
management of distributed unmanned systems, Unmanned
Systems Asia 2011, Singapore

[9] Sapaty PS (2011), Seeing and managing distributed
spaces using maritime unmanned systems, GLOBAL OPV and
Maritime Unmanned Systems Summit, Dedeman Hotel, Istanbul,
Turkey

[10] Sapaty P (2011), Meeting the world challenges with
advanced system organizations, Informatics in Control
Automation and Robotics, Lecture Notes in Electrical
Engineering, Vol. 85, 1st Edition, Springer

[11] Sapaty P, Kuhnert D, Sugisaka M, Finkelstein R (2009),
Developing high-level management facilities for distributed
unmanned systems, Proc. Fourteenth International Symposium on
Artificial Life and Robotics (AROB 14th’09), B-Con Plaza,
Beppu, Oita, Japan

[12] Sapaty P, Morozov A, Finkelstein R, Sugisaka M,
Lambert D (2008), A new concept of flexible organization for
distributed robotized systems, Artificial Life and Robotics,
Volume 12, Numbers 1-2, ISSN: 1433-5298 (Print) 1614-7456
(Online), Springer Japan

[13] Sapaty P (2008), Distributed technology for global
dominance, Proc. of SPIE, Volume 6981, Defense
Transformation and Net-Centric Systems 2008, 69810T

[14] Sapaty P (2005), Ruling distributed dynamic worlds, John
Wiley & Sons, New York.

[15] Sapaty P (1999), Mobile processing in distributed and
open environments, John Wiley & Sons, New York

[16] P. Sapaty (1993), A distributed processing system,
European Patent No. 0389655, Publ. 10.11.93, European Patent
Office.

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12),
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 29

