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Abstract: A high-level ideology and technology will be revealed that can effectively convert any distributed system (manned, 
unmanned, or mixed) into a globally programmable spatial machine capable of operating without central resources. Compact 
mission scenarios in a special high-level language can start from any point, runtime covering & grasping the whole system or 
its parts needed, setting operational infrastructures, and orienting local and global behavior. The approach offered can be 
particularly useful for quick reaction on asymmetric situations and threats the world is facing, paving the way to massive use of 
cooperative robotics and gradual transition to unmanned systems for solving critical problems in unpredictable environments. 
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1 INTRODUCTION 

In our modern dynamic world we are meeting numerous 
irregular situations and threats where proper reaction could 
save lives and wealth and protect critical infrastructures. For 
example, no secret that world powerful armies with traditional 
system organizations are often losing to terrorists, insurgents 
or piracy with primitive gadgets but very flexible structures 
making them hard to detect and fight. And delayed reaction to 
earthquakes or tsunamis is a result of inadequacy of system 
organizations too.  

A novel philosophy and supporting high-level networking 
technology will be described that can quickly react on 
irregular situations and threats and organize any available 
human and technical resources into operable systems 
providing global awareness, pursuing global goals and self-
recovering from damages.  

The approach allows us at runtime, on the fly, formulate 
top semantics of the needed reaction on asymmetric events in 
a special Distributed Scenario Language (DSL), shifting most 
of traditional organizational routines to automated up to fully 
automatic implementation, with effective engagement of 
unmanned systems.  

The details of this technology, based on gestalt and holistic  
principles [1] rather than traditional multi-agent organizations 
[2, 3] will be revealed in this paper, with explanation of 
different DSL scenarios that can be effectively executed by 
self-organized robotic groups. These scenarios include 
collective navigation of distributed spaces, coastline patrols, 
outlining and impacting forest fire zones, and swarm-against-
swarm solutions where highly organized robotic swarms can 
fight another, manned, groups related, say, to piracy intrusions.   

The technology offered provides a unified solution to 
human-robot interaction and multi-robot behaviors just as a 
derivative of parallel and distributed interpretation of system 
scenarios in DSL. 

2 TRADITIONAL SYSTEM ORGANIZATIONS 
AND THEIR PROBLEMS  

2.1 From system structure to system function 
The traditional approach to system design, development 

and management is when the system structure and system 
organization are primary, created in advance, and global 
function with overall behavior are secondary, as in Fig. 1. 

 
Fig. 1.  Traditional approach to system design 

 
Typical examples of the traditional approach are multi-

agent organizations [2, 3], where global system behavior is 
the result of work and interaction of predetermined parts 
(agents). In this respect we can name the 4D/RCS Model 
Architecture [4], with its block diagram shown in Fig. 2.  
 

 
Fig. 2. 4D/RCS model architecture 

 
4D/RCS prescribes a hierarchical control principle, 

where commands flow down the predefined hierarchy, and 
status feedback and sensory information flows up. Large 
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amounts of communication may also occur between nodes at 
the same level, particularly within the same subtree of the 
command tree. Future Combat Systems (FCS) project [5] was 
ideologically and technologically based on this organizational 
(as well as artificial intelligence) hierarchical model. 

2.2 The problems with classical organizations 
The related systems, where we first formalize and build the 

system structure and organization and then try to get from 
these the global behavior needed, are usually static, and may 
often fail to adapt to highly dynamic and asymmetric 
situations. If the initial goals change, the whole system may 
have to be partially or even completely redesigned and 
reassembled. Adjusting the already existing system to new 
goals and functionality needed may result in a considerable 
loss of system’s integrity and performance.  
 

3 AN ALTERNATIVE: THE SPATIAL GRASP 
TECHNOLOGY (SGT) 

3.1 SGT basic idea  
Within the approach offered (also known as 

“overoperability” [6, 7] in contrast to the conventional 
interoperability) the global function and overall behavior are 
considered, as much as possible, to be primary. Whereas 
system structure and organization (command and control 
including) are secondary, with the latter as a derivative of the 
former, as in Fig. 3. 

 
Fig. 3.  SGT basic idea of system creation and organization 

 
The advantages of this (actually, the other way round) 

approach include high potential flexibility of runtime system 
creation and organization, especially in quick responses to 
asymmetric events, and enhanced opportunities for automated 
up to fully automatic (unmanned) solutions. 

3.2 Parallel spatial grasp of distributed worlds 
SGT is based on a formalized wavelike seamless 

navigation, coverage, penetration, and grasping of distributed 
physical and virtual spaces, as shown in Fig. 4.  

    
                                a)                                               b) 

Fig. 4.  Incremental integral grasping of distributed worlds: a) 
virtual interpretation, b) symbolic physical analogy 

 
This top mode of system vision has strong psychological 

and philosophical background, reflecting, for example, how 

humans (top commanders) mentally plan, comprehend, and 
control complex operations in distributed environments. 

3.3  Distributed scenario interpretation 
The approach in practice works as follows. A network 

of universal control modules U, embedded into key system 
points, collectively interprets system scenarios expressed in 
DSL, as shown in Fig. 5. System scenarios, based on the 
spatial grasp idea (representing any parallel and distributed 
algorithms, spatial cycles including), can start from any 
node, subsequently covering the system at runtime.  

 

 
Fig. 5. Scenario execution in dynamic environments 

 
DSL scenarios are very compact and can be created on 

the fly. Different scenarios can cooperate or compete in a 
networked space (depending on real control or distributed 
simulation mode) as overlapping fields of solutions. Self-
spreading scenarios can also create runtime knowledge 
infrastructures distributed between system components 
(robots, sensors, humans). These infrastructures can 
effectively support distributed databases, command and 
control, situation awareness, and autonomous decisions, as 
well as any other computational or control models.  

More details on the SGT, its core language DSL, and its 
distributed interpreter can be found elsewhere [8-16], with 
some key features (necessary for explanation of the chosen 
here applications) being briefed in the following sections. 

 

4 DISTRIBUTED SCENARIO LANGUAGE, DSL 

DSL differs radically from traditional programming 
languages. It allows us to directly move through, observe, 
and make any actions and decisions in fully distributed 
environments. DSL directly operates with: 

• Virtual World (VW), finite and discrete, consisting of 
nodes and semantic links between them.  

• Physical World (PW), infinite and continuous, where 
each point can be identified and accessed by physical 
coordinates. 

• Virtual-Physical World (VPW), finite and discrete, 
similar to VW but associating virtual nodes with 
certain PW coordinates.  

4.1 DSL basic features 
Any sequential or parallel, centralized or distributed, 

stationary or mobile algorithm operating with information 
and/or physical matter can be written in DSL on a high 
level. Its top level recursive structure is shown in Fig. 6. 
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Fig. 6. DSL top level syntax 

 
DSL main features may be summarized as follows: 

• A DSL scenario develops as parallel transition between 
sets of progress points (props). 

• Starting from a prop, an action may result in other props. 
• Each prop has a resulting value and a resulting state. 
• Different actions may evolve independently or 

interdependently from the same prop.  
• Actions may also spatially succeed each other, with new 

ones applied in parallel from all props reached by the 
previous actions. 

• Elementary operations may directly use values of props 
obtained from other actions whatever complex and 
remote. 

• Any prop can associate with a node in VW or a position 
in PW, or both -- when dealing with VPW.  

• Any number of props can simultaneously link with the 
same points of the worlds. 

• Staying with the world points, it is possible to directly 
access and impact local world parameters, whether virtual 
or physical. 

4.2. DSL rules 
The basic construct, rule, of the language can represent any 

action or decision and can, for example, be as follows (this list 
is far from being complete): 

• Elementary arithmetic, string or logic operation.  
• Hop in a physical, virtual, or combined space. 
• Hierarchical fusion and return of (remote) data. 
• Distributed control, both sequential and parallel. 
• A variety of special contexts for navigation in space, 

influencing operations and decisions.  
• Type or sense of a value, or its chosen usage, guiding 

automatic interpretation. 
• Creation or removal of nodes and links in distributed 

knowledge networks. 

4.3 Spatial variables in DSL 
Working in fully distributed physical or virtual 

environments, DSL has different types of variables, called 
spatial, effectively serving multiple cooperative processes: 
• Heritable variables – these are starting in a prop and 

serving all subsequent props, which can share them in 

both read & write operations. 
• Frontal variables – are an individual and exclusive 

prop’s property (not shared with other props), being 
transferred between the consecutive props, and 
replicated if from a single prop a number of other 
props emerge.  

• Environmental variables – are accessing different 
elements of physical and virtual words when 
navigating them, also a variety of parameters of the 
internal world of DSL interpreter. 

• Nodal variables – allow us to attach an individual 
temporary property to VW and VPW nodes, accessed 
and shared by all props associated with these nodes.  

These variables allow us to create spatial algorithms 
working in between components of distributed systems 
rather than in them, thus allowing for highly flexible, 
robust and capable of self-recovery solutions, even though 
different components may fail indiscriminately. Such 
algorithms can freely move in distributed processing 
environments (partially or as an organized whole), always 
preserving global integrity and overall control.  

Traditional abbreviations of operations and delimiters 
can be used too, substituting some rules, as in following 
examples throughout this text, in order to shorten DSL 
programs (but always remaining within the general 
recursive syntactic structure shown in Fig. 6). 

 

5 THE DSL INTERPRETER  

5.1 Distributed interpreter organization 
The DSL interpreter consists of specialized modules 

(which can work in parallel) handling and sharing specific 
language interpretation data structures [10, 13-16]. The 
network of the interpreters (the latter encircled as modules 
U in Fig. 7) can be mobile and open, changing the number 
of nodes and communication structure at runtime. 
Communicating copies of the interpreter can be concealed, 
if needed (say, for operation in hostile environments). 

The heart of the distributed interpreter is its spatial track 
system. The dynamically crated track forests are used for 
supporting (or removing) spatial variables and echoing and 
merging different types of control states and remote data.  

 

 
Fig. 7.  Networked DSL interpreter organization 
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Being self-optimized in the echo processes, the track 
forests are dynamically covering the systems in which DSL 
scenarios evolve, keeping the overall parallel and distributed 
process integrity as well as local and global control. They also 
route further grasps to the positions in physical, virtual or 
combined spaces reached by the previous grasps, uniting them 
with the frontal variables left there by preceding grasps. 

5.2 Integrating interpreter with usual robotic functionality 
Installing DSL interpreters (as universal modules U, see 

Fig. 8) into mobile robots (ground, aerial, surface, underwater, 
space, etc.) allows us to organize effective group solutions 
(incl. any swarming) of complex problems in distributed 
physical spaces in a clear and concise way, effectively shifting 
traditional management routines to automatic levels. Human-
robot interaction and gradual transition to fully unmanned 
systems are essentially assisted too. 

  

 
Fig. 8. Examples of cooperative robotic scenario skeletons 

 
Any groups of manned-unmanned devices with DSL 

interpreters implanted into them, with any communication 
networks in between, can serve as universal spatial machines 
capable of doing any jobs together, under a unified control 
automatically emerging from high-level DSL scenarios.  

 

6 EXAMPLE OF SEMANTIC, TASK LEVEL 

By embedding DSL interpreters into robotic vehicles we 
can task them on a higher, semantic level, skipping numerous 
traditional details of management of them as a group -- fully 
delegating these to an automatic solution. An exemplary 
semantic level tasking may be as follows. 

Go to physical locations of the disaster zone with 
coordinates: (x1, y1), (x2, y2), (x3, y3); evaluate radiation 
level at each location; return its maximum value with attached 
exact coordinates of the respected location to the 
headquarters; and launch from the latter a massive cleanup 
operation at this location. 

The DSL program will strictly follow this scenario: 
 

Location = maximum(move(x1_y1, x2_y2, x3_y3); 
  attach(evaluate(radiation), WHERE)); 
move(Location[2]); massive_cleanup(radiation) 

This (inherently parallel and fully distributed) scenario 
can be executed with any available number of mobile 
robots (practically from one to four), and the number of 
robots may change at runtime. Distributed DSL interpreter 
automatically creates the needed operational and command 
and control infrastructures of the robotic group and 
guarantees full task execution under any variations [8, 9]. 
 

7 PATROLLING COASTAL WATERS 

This scenario may be suitable for both surface and 
varying depth underwater search of intrusions in the 
coastline zone, but for simplicity we will be assuming here 
only two dimensional space to be navigated. 

At the beginning let us create a coastal waypoint map in 
the form of a semantic network, as in Fig. 9 (where r is 
chosen as an arbitrary name of links between the nodes-
waypoints). The corresponding DSL solution is as follows. 

 
Fig. 9. Coastal waypoint map 

 
create( 
 #x1_y1; +r#x2_y2; +r#x3_y3; ... +r#x9_y9)  
 

A single USV (or UUV) solution repeatedly navigating 
all coastal area by the map created is shown in Fig. 10 and 
DSL program that follows (searching the water space for 
alien objects by the depth available by vehicle’s sensors). 

 
Fig. 10. Patrolling coastal waters with a single vehicle 

 
move(hop(x1_y1)); R = +r; 
repeat(repeat(move(hop(R)); 
         check_report(depth)); invert(R)) 

 
Two-vehicle parallel solution is shown in Fig. 11 and by 

the following program, with vehicles are moving according 
to the coastal map independently, assuming each having 
embedded automatic procedures for avoiding possible 
collisions with the other vehicle. 

 
Fig.11. Patrolling coastal waters with two vehicles 
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(move(hop(x1_y1)); R = +r),  
(move(hop(x9_y9)); R = -r); 
repeat(repeat(move_avoid(hop(R));  
          check_report(depth)); invert(R)) 
 

Another solution for the two-vehicle case may be when 
each vehicle turns back if discovers another patrol vehicle on 
its way, checking for this its vicinity by depth2). 
 
(move (hop(x1_y1)); R = +r),  
(move (hop(x9_y9)); R = -r); 
repeat(repeat(none(depth2); move(hop(R));     
         check_report(depth)); invert(R)) 

 
For the both latter cases, the whole coastline will always be 

searched in full if at least a single vehicle remains operational. 
 

8 BATTLING FOREST FIRES 

We will consider a solution where distributed physical 
space is randomly searched by simultaneous propagation of 
multiple reconnaissance units, which when discover 
irregularities (e.g. forest fires) move further and encircle 
respected zones, collect their perimeter coordinates, transfer 
them to the headquarters (HQ), and ultimately initiate massive 
impact on the zones under fire.  

The zones with fires and initial positions of reconnaissance 
units are shown in Fig. 12a, and intermediary positions of 
robotic unites moving randomly-oriented (repeatedly shifting 
their positions within certain coordinate sector) are in Fig. 12b. 

  
a)                                         b) 

Fig.12. Initial scenario injection (a) and robots movement (b) 
 

After detecting fire locations, the reconnaissance units that 
reached them begin moving around the fire zones, having 
initially randomly chosen the encirclement orientation (i.e. 
clockwise or anticlockwise). In each step they accumulate 
coordinates of the periphery of fire zones, and upon 
termination of the encirclement send the completed zone 
coordinates to the headquarters (HQ). Getting the latter, the 
HQ is launching a massive direct impact on the zones outlined, 
as shown in Fig. 13, which may be manned, unmanned, or 
mixed. The full DSL scenario for this task may be as follows. 

 
move(HQ); create_nodes(1,2,3,4,5,6); 
repeat(shift(random(limits));  
 if(check(fire), 
    (Zone = WHERE; Direction =  
      random(clockwise, anticlockwise); 

     repeat( 
      move_around(fire, Direction, depth); 
    append(Zone, WHERE); 

      if(distance(WHERE,Zone[1])<threshold,  
         (hop(HQ); impact(Zone); done))))) 
 

 
Fig.13. Encircling fire zones followed by global impact 

 
Other interpretations of this scenario may be dealing 

with radiation zones, environment pollution, zones of 
terrorist activities, zones of fish concentration, etc., with 
aerial, ground, surface or underwater robots engaged. 
 

9 SWARM AGAINST SWARM SCENARIO 

As a more complex scenario example in DSL we will 
consider here the case where an unmanned swarm is 
opposing other (possibly, manned) group/swarm, as in Fig. 
14. This may relate, for example, to fighting piracy in 
maritime environment where aerial, surface and 
underwater unmanned vehicles, working cooperatively 
under a unified control, can be used for withstanding this 
negative activity taking place worldwide. 

 
Fig. 14.  Fighting group targets with unmanned swarms 

 
Main features of this scenario are as follows: 

• Initial launch of the swarmed chasers (shown in red in 
Fig. 14, with DSL interpreters embedded, which can 
communicate with each other) into the expected piracy 
area. 

• Discovering targets and forming their priority list by 
their positions in physical space where maximum 
priority is assigned to topologically central targets as 
potential control units of the intruders. 

• Other targets are sorted out by their distance from the 
topological center of their group, estimated previously. 
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• Most peripheral targets (those in maximum distance from 
the topological center, as potentially having more chances 
to escape, are being of higher priority too. 

• Assigning available chasers to targets, classifying them as 
engaged, with chasing and neutralizing targets, and 
subsequently returning them into status free after 
performing mission. 

• The vacant chasers are again engaged in the targets 
selection & impact. 

This entire advanced swarm-against-swarm scenario may 
be expressed in DSL in a very compact form, as follows. 
 
frontal(Next); 
sequence( 
 start_launch(all_free_chasers,targets_area), 
 repeat( 
  hop(any_free_chaser); 
All_targets = merge(hop(all_free_chasers);  
coordinates(targets_seen)); 
nonempty(All_targets); 
Center = average(All_targets); 

  List = min_max_sort(split(All_targets);     
      attach(distance(VALUE,Center),VALUE); 
  List = append(withdraw(List, last), List); 
  loop(nonempty(List); Next =  
   element(withdraw(List, first), second); 
   Chaser = 
    element(min(hop(all_free_chasers); 
      attach(distance(WHERE,Next),ADDRESS),  
       second); 
   release(hop(Chaser); STATUS = engaged; 
    pursue_investigate_neutralize(Next);  
    STATUS = free)))); 
 

It is worth noting that all the chaser swarm management 
expressed or automatically induced by the above program is 
done exclusively within the swarm itself, without any external 
intervention, which dramatically simplifies external control of 
this multi-robot operation. 

 

10 CONCLUSION 

A brief summary of advantages of the approach offered 
may be as follows. 

• The Spatial Grasp ideology and technology can 
dramatically simplify application programming in 
distributed dynamic systems. 

• Setting multi-robot solutions in DSL may often be 
comparable in complexity to routine data processing in 
traditional languages. 

• External management of multi-robot systems may not 
depend on the number of components in them due to their 
internal self-organization and automatic command and 
control inside robotic groups. 

• Formalization of mission scenarios in DSL can make 
human-robot interaction and transition to fully unmanned 
systems natural and straightforward. 

• Spatial swarm intelligence in DSL can successfully 
compete with human collective intelligence, 
outperforming the latter in time critical situations. 

In addition to the features listed above, we can state that 
in comparison with other systems, DSL interpreter 
represents an embedded universal intelligence common to 
all applications. Any scenario can be executed by a 
network of such intelligences. In other approaches, most of 
the system intelligence has to be programmed explicitly for 
each application, thus enormously complicating mission 
planning and management.  

All communications among unmanned units, also 
between manned and unmanned ones, are on a high, 
semantic level in DSL. They are very compact (often 
hundreds times shorter than in other languages) which may 
be essential for maritime (especially underwater) 
operations with casual and limited data channels. 

 

REFERENCES 

[1] Wertheimer M (1924), Gestalt theory, Erlangen, Berlin 
[2] Minsky M (1988), The society of mind, Simon and 

Schuster, New York 
[3] www.wikipedia.org/wiki/Multi-agent_system 
[4] 4D/RCS: A reference model architecture for unmanned 

vehicle system, version 2.0 (2002), Report NIST 
[5] Feliciano CN (2009), The army's future combat system 

program (Defense, Security and Strategy Series), Nova Science 
Pub Inc. 

[6] Sapaty PS (2002), Over-operability in distributed 
simulation and control, The MSIAC's M&S Journal Online, 
Winter Issue, Volume 4, No. 2, Alexandria, VA, USA 

[7] Sapaty P (2009), The over-operability organization of 
distributed dynamic systems for asymmetric operations, Proc. 
IMA Conference on Mathematics in Defence, Farnborough, UK 

[8] Sapaty P (2011), Spatial grasp technology for high-level 
management of distributed unmanned systems, Unmanned 
Systems Asia 2011, Singapore  

[9] Sapaty PS (2011), Seeing and managing distributed 
spaces using maritime unmanned systems, GLOBAL OPV and 
Maritime Unmanned Systems Summit, Dedeman Hotel, Istanbul, 
Turkey 

[10] Sapaty P (2011), Meeting the world challenges with 
advanced system organizations, Informatics in Control 
Automation and Robotics, Lecture Notes in Electrical 
Engineering, Vol. 85, 1st Edition, Springer 

[11] Sapaty P, Kuhnert D, Sugisaka M, Finkelstein R (2009), 
Developing high-level management facilities for distributed 
unmanned systems, Proc. Fourteenth International Symposium on 
Artificial Life and Robotics (AROB 14th’09), B-Con Plaza, 
Beppu, Oita, Japan 

[12] Sapaty P, Morozov A, Finkelstein R, Sugisaka M, 
Lambert D (2008), A new concept of flexible organization for 
distributed robotized systems, Artificial Life and Robotics, 
Volume 12, Numbers 1-2, ISSN: 1433-5298 (Print) 1614-7456 
(Online), Springer Japan 

[13] Sapaty P (2008), Distributed technology for global 
dominance, Proc. of SPIE, Volume 6981, Defense 
Transformation and Net-Centric Systems 2008, 69810T  

[14] Sapaty P (2005), Ruling distributed dynamic worlds, John 
Wiley & Sons, New York. 

[15] Sapaty P (1999), Mobile processing in distributed and 
open environments, John Wiley & Sons, New York  

[16] P. Sapaty (1993), A distributed processing system, 
European Patent No. 0389655, Publ. 10.11.93, European Patent 
Office. 

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12), 
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 29




