
Genetic-Algorithms Produce Individual Robotic-Rat-Pup Behaviors that Match 

Norway-Rat-Pup Behaviors at Multiple Scales 
 

 Chris Sullivan
1
, Sanjay S. Joshi

2,4
, and Jeffrey C. Schank

3
 

1
Department of Mechanical and Aerospace Engineering, University of California, Davis, USA 

2
Department of Mechanical and Aerospace Engineering, University of California, Davis, USA 

3
Department of Psychology, University of California, Davis, USA 

 

4
Correspondence: ctljoshi@gmail.com 

 

Abstract: We designed cognitive architectures for individual robotic rat pups using genetic algorithms, with the aim of 

achieving insight into Norway rat pup behavior. Our genetic algorithms were evolved using only metrics of Norway rap pup 

behavior (e.g., percent of time spent in corners, along walls, and center of an arena during animal experiments). Robotic rat 

pups quantitatively matched Norway rat pups at the macro level and additionally qualitatively matched Norway rat pup 

behavior at the micro behavior scales (corner snooping, punting). The complexity of the resulting deterministic controllers may 

lend support to previous studies that show random-like control codes (possibly emerging from complex underlying 

interactions) can produce apparently realistic rat pup behavior below a certain age. 

 

Keywords: genetic algorithm, behavior, biorobotics 

 

1 INTRODUCTION 

We combine robotic models of infant Norway rats 

(robopups), with computer simulation and animal 

experimentation to study rat pup behavior (Fig. 1). In past 

work, we showed the remarkable result that simply 

choosing robopup movement directions at random, 

regardless of sensory input, produced quite intentional-

looking emergent behavior patterns that matched rat pups in 

both individuals and groups, somewhere in-between 7-10 

days of age [1]. Our analysis revealed that body 

morphology and arena topology interacted with the random 

control architecture to produce emergent complex behavior. 

We could not conclude, however, from these results that rat 

pups in an arena move purely randomly, because we did not 

investigate the full space of possible deterministic 

sensorimotor rules. In our current work, we use genetic 

algorithms to investigate the space of possible sensorimotor 

rules by artificially designing sensory-dependent 

deterministic robopup controllers using macro-level 

topological fitness metrics (e.g., percent of time spent in 

various regions of an arena during animal experiments). 

The genetic algorithms allow us to explore a wide range of 

possible deterministic control solutions. In this paper, we 

review past work and explain our methods to evolve 

cognitive codes with genetic algorithms to study a variety 

of solutions. 

 

2 BACKGROUND 

Behavior is influenced by the nervous system, body 

morphology, physiology, the environment (including the 

social environment), and interactions among all these 

elements. Thus, our basic schematic view of behavior is 

defined in equation (1). Autonomous robots and associated 

simulations allow systematic variation of the variables of 

(1) in ways that are often impossible in live animals.  

 

Behavior = F(Internal State, Sensorimotor Rules, 

Biomechanics, Environment)  (1)  

 

Equation (1) is a schema for developing animal and 

robotic models and, by including the environment (broadly 

construed), it is a schema that is likely to result in emergent 

behavior.  

 

2.1 Rat Pup Experiments 

An individual rat-pup experiment consists of placing a 

single pup in the middle of an arena and videotaping its 

behavior from above.  Figure 1 illustrates a 7-day old rat 

pup in an arena.  Arenas could be manipulated in a variety 

of ways and the test chamber was configured to study the 

effects of specific environmental stimuli (e.g., heat, inclines, 

and light). The video recordings of rats moving in the arena, 

were then analyzed by extracting digitized video frames at 

specified time intervals (i.e., 5 secs.) to record the position 

of the tip of the nose and base of the tail [2]. 
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Fig. 1. 7-day old Norway rat pup during animal observation 

experiments. 

 

Algorithms were then used to extract metrics from these 

measurements [3]. Animal experiment results for individual  

10-day old pups were reported in Schank et al., 2004 [4]. 

Rat pups spent time in corners, near walls, and in the center 

of the arena. In addition, some rat pups visited one corner, 

some two corners, and others 3 or 4 corners. Sometimes, a 

rat pup spent an extended period of time in a limited region 

of the arena. Playback of video from these pup experiments 

revealed “micro” behaviors, which were limited in time and 

space. Micro behaviors were easily identified in video 

playback, but hidden in 2-dimensional trajectory plots. For 

example, rat pups repeatedly burrowed their nose into 

corners for variable periods of time (i.e., corner-snooping, 

e.g., see Fig. 1). Rat pups sometimes turned in place in the 

open or in a corner for periods of time, which is called 

punting. Rat pups also followed walls for periods of time, 

which we called wall-following. These individual rat-pup 

behavior features also hold for 7-day old pups [1]. We 

therefore categorized all rat pup behavior as either: (1) 

macro-level behavior (those relating to overall trajectories 

which occur on the order of 10 minutes over extended arena 

space), or (2) micro-level (those that relate to detailed 

micro-behaviors as described above which occur on the 

order of seconds to minutes over limited arena space). 

 

2.2 Robotic Rats and Dynamic Simulator 

In parallel with the animal experiments, we conducted 

experiments with robotic rat pups (robopups). The current 

generation of robopup is shown in Fig. 2. The design of the 

robopup incorporated biologically inspired and robotic 

aspects, such as body shape, sensor and actuator location, 

and computational needs [4].  In brief, the robot’s shape 

was designed to model the basic shape of a rat pup 7-10 

days of age.  The robot had the same 3:1 length to width 

ratio as Norway rat pups in the 7 to 10-day age range, and 

had a similar curved snout (Fig. 1).  Rat pups have limited 

mobility at these ages and primarily use their back legs to 

push their bodies forward [2]. To model this type of 

movement, two rear rubber wheels propelled the robot and 

a supporting passive wheel stabilized the front of the robot.   

Before 13 to 14 days of age, rats are blind, deaf, and 

have limited olfactory capabilities [3].  Thus, infant rat 

pups rely largely on tactility at these early ages. Robopups 

incorporated tactility by placing 14 micro-switches at 

various positions around the robot’s perimeter.  Most of 

the sensors were placed near the front of the robopup 

because a rat pup’s primary tactile sensitivity is around the 

snout area [2].  To detect contact at points where there 

were no switches, brass strips were connected to the micro 

switches.  Sensorimotor rules were programmed in the 

robot’s microprocessor (Parallax 25 MHz Java stamp 24-

pin DIP module).  Robots were tested in arenas 

proportional to the arenas in which rat pups were tested 

(Fig. 1), and we applied the exact same data extraction and 

analysis tools for both the robopups and rat pups.   

Fig. 2. Robotic model of infant rat pup (foreground), and 

another robot in testing arena (on monitor).  

 

A MATLAB/Simulink based individual-robot 

simulation was used in the current study [5]. Just as in the 

actual robots, sensorimotor rules are programmed into the 

robot simulator. The only differences are the programming 

language and the computing platform.  Model validation 

studies showed that the simulation produced results very 

similar to robopups [5].  

Several robot controllers were developed for the 

robopup project to accomplish the goal of modeling rat-pup 

sensory behavior. Each controller took in information from 

the robot’s tactile sensors and then used that information to 
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send commands to the two robot wheels. The robopup 

could move forward, back up, or turn (or some combination 

thereof), depending on the command sent to each wheel.  

 

2.3 Random Control Architectures 

In May et al., 2006 [1], we implemented a random 

control architecture as a type of null model to compare to 

other sensor-driven architectures.  In this null model, 

robots did not use their sensors at all.  Instead, every two 

seconds, robopups randomly chose one of ten movements 

with equal probability: stop moving or one of the seven 

forward or two back-up directions depicted in Fig. 3.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Illustration of tactile sensor groups on robot, and 

possible movement directions. 

 

Rat pups can flex their body and turn away from a corner.  

Rigid-body robopups cannot escape a corner in this way. 

Therefore, to model the ability of rat pups to escape corners, 

we implemented back-up directions of movement.   When 

moving, the random architecture distributed movements 

such that a robopup moved forward 78% of the time and 

backed up 22% of the time. It was surprising and 

remarkable how well the trajectory plots of “random” 

robots matched the plots for both 7 and 10 day-old pups.  

Further analysis showed that the random architecture 

resulted in good matches somewhere in-between 7-day old 

and 10-day old rat pups in key macro-level topological 

metrics, such as the proportion of time spent in corners, 

near walls, and in the center of the arena [1]. The robopups 

also exhibited all the micro-level behaviors commonly seen 

in rat pups including corner-snooping, wall-following, and 

punting. This surprising result could be explained by the 

complex interaction of body-shape, arena constraints, and 

simple cognitive codes all working in unison to allow 

behavior to emerge.  

 

3 GENETIC ALGORITHM METHODOLOGY 

 

In May et al., 2006 [1], we first designed the controller 

and then analyzed the ability of the controller to match 

certain macro-level topological quantitative metrics and 

micro-level behaviors. In the current work, we reversed the 

procedure by imposing (through artificial selection) the 

matching of macro-level quantitative topological numerical 

metrics (percent of time spent in various regions of an arena 

during animal experiments), and then studied the resulting 

variety of controllers and their subsequent qualitative 

micro-level detailed behaviors.  

Given that the random control architecture, using no 

sensory information, produced results very similar to the rat 

pups, a natural question to ask was how well any sensory-

dependent deterministic control architecture could perform 

in matching pup behavior. To explore the large space of 

possible deterministic control designs, we employed a 

genetic algorithm (GA). The evolutionary method used to 

design controllers depended on three components: (i) 

macro-level behavior metrics that could be numerically 

quantified (e.g., percent of time spent in various regions of 

an arena during animal experiments), (ii) creation of fitness 

functions that evaluated behavioral metrics to score the 

quality of control designs, and (iii) a method of varying and 

combining high-scoring control designs to create new 

control designs (called a generation of control designs).  

Employing a relatively high-fidelity dynamics model [5] 

placed computational constraints on our ability to simulate 

thousands of solutions over hundreds of generations, as is 

commonly done in GA studies. However, the evolutionary 

method was still extremely successful at automatically 

constructing and comparing thousands of computer-

designed control codes, many of which closely matched our 

performance goals and rat pup behavior.  

3.1 Control Designs 

In this study, the physical design of the robot was held 

constant; only the motor responses to sensor contact were 

able to evolve from generation to generation. For each of 

the eight touch sensor groups on the robot (Fig. 3), a motor 

response could support up to three consecutive wheel 
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commands (Fig. 4). A wheel command consisted of a left 

wheel speed, a right wheel speed, and a time variable to 

define duration of wheel operation. Each sensor’s motor 

response therefore had nine degrees of freedom, bringing 

the total potential number of variables to 74 (eight sensor 

groups and an additional two variables to define default left 

and right wheel speeds when no sensors were currently 

activated).   

 

Fig. 4. Variables representing sensori-motor mapping on 

robotic pup. 

 

It is important to note that a controller design was not 

required to have more than one response for each sensor 

group. If a controller design consisted of more than one 

response for a sensor group, the second and third responses 

were executed sequentially in order, for the amount of time 

defined in their duration variable (Fig. 4). It was up to the 

genetic algorithm to select the best combination of the 74 

variables that would lead to the most realistic rat pup 

behavior. The controller genome was then simply a matrix 

of floating numbers precise to the 2
nd

 decimal place. 

 

3.2 Topological Metric 

The underlying fitness metric matched was based on a 

topological analysis of where infant rat pups spend time in 

an arena. An average profile of 113 10-day old pups was 

reported in Schank et al., 2004 by comparing the percentage 

of total time spent next to walls, in corners, and in the 

center of the arena during rat pup testing [4]. Every 5 secs 

during a 10 minute experiment, a pup’s position was 

classified as a wall event, corner event, or center event. A 

wall event was defined as a snout point next to a wall.  A 

corner event was defined as a snout point within a square 

area delineated by a corner.  A center event was a snout 

point in the inner arena.  We found that rat pups, on 

average, spent ~60% of time near a corner, ~22% near a 

wall, and ~18% in the center (Fig. 5). Note that this metric 

of rat pup behavior does not describe micro behaviors that 

rat pups exhibited including corner snooping and punting. 

 

Fig. 5 Topological fitness metrics. Percentages indicate 

location distributions among all corners (~60%), walls 

(~22%), and center (~18%) areas averaged over 113 rat 

pups [4]. 

3.3 Fitness Function 

 

A linear fitness function was defined as in Eqn. 2, where c 

is the percent distribution of corner samples (in range from 

0-100), c0 is the desired target percent distribution of corner 

samples (60% in our case), and the variables w, a, represent 

the walls and center areas, respectively. The goal then was 

to maximize this fitness function (c0 =60, w0 =22, a0 =18). 

Note that the overall fitness function is in the range from 0-

1. Even though we refer to the fitness function as linear, the 

function in (2) is piecewise linear 
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3.4 Genetic Algorithm (GA) 

 

The GA would initially generate 12 controller genomes 

at random for the first generation of simulated robots. The 

simulation stored the (x,y) locations of the nose of the robot 

every 5 seconds to maintain consistency with the original 

rat pup observations (Section 3.2). For each controller 

design, three simulation trials were run with different initial 

headings for a robot initially placed in the center of the 
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arena, since initial orientation often resulted in a substantial 

difference in robot paths for both deterministic and random 

architectures. The fitness scores were computed for each 

simulation and averaged to obtain an average fitness value.  

The genetic algorithm employed one of two selection 

methods to vary control design each generation. Both single 

parent and crossbreeding techniques were used. 

Once the GA evaluated the average fitness of all the 

simulated robots in a given generation, the top three designs 

from the population of 12 were selected as a basis for the 

next generation in the single parent cases. Each of the 

chosen parent designs created four (slightly varied) versions 

of itself to produce the 12 children needed for the next 

generation. In the crossbreeding trials, the process was 

different. New genomes were created by choosing two 

parents from the previous generation to essentially blend 

motor response features of the two parents. Rather than 

averaging motor responses, the child design would instead 

pick several motor responses from each parent and the 

resulting design would be tried. The percentage of cases in 

which a particular design would be chosen as a parent was 

proportional to its fitness score. 

Mutations could occur at the level of an individual 

response element (“point” mutations), or an entire sensor 

response (“bulk” mutations). The mutation rates were 25% 

for point mutations, and 15% for bulk mutations. Our 

chosen mutation rates ensured that the children genomes 

would vary significantly from the parents, but hopefully not 

so significantly that natural selection was neutralized. Point 

mutations could modify a single wheel speed by roughly 

ten percent, or wheel duration by up to 0.1 second. After the 

new generation of controller designs was mutated, the 

simulation and fitness function evaluation process started 

over and repeated for 20 generations.  

 

4 RESULTS 

The linear fitness function (2) frequently evolved a 

control scheme that invoked punting or flailing movement 

of the robot when a wall was contacted by a sensor. This 

caused the robot to move across the arena in unpredictable 

trajectories. In some cases, a no-sensor-contact default 

curved movement would lead the robot into another wall or 

corner across the arena, at which point the robot would 

again spin away from the wall and head out into the arena 

again (Fig. 6).  

 

 

Fig. 6.  Representative trajectory of robotic rat pup using a 

GA solution. This controller achieved an average corner 

behavior of ~65%, average wall behavior of ~21%, and 

average center behavior of ~14%. 

 

The best (fully deterministic) linear fitness controller 

trajectories were quantitatively and visually similar to both 

infant rat pup trajectories (Schank et al., 2004 [4]) and the 

previously reported (May et al. 2006 [1]) random robopup 

trajectories in that the controller produced: 

 

 trajectories that closely matched the macro-level 

topological corner, wall, and center distributions 

(by selection with the fitness functions); 

 a wide variety of trajectories for a single controller, 

including trajectories that visited a varying number 

of corners (depending on a simulated robopup’s 

initial heading); 

 typical rat-pup micro-level sub-behaviors like 

corner snooping, wall-following, and punting 

 many trajectories that traversed the center of the 

arena and crossed the length of the arena to the 

other side, and whose paths crossed over each 

other multiple times.  

 

Only the first item above was explicitly designed-for in the 

GA methodology. The other three items were emergent.  

 

5 CONCLUSIONS 

The best GA solutions (in terms of the macro-level 

topological fitness metric and micro-level rat pup 

behaviors) incorporated a repeated thrashing at wall contact 

and a ‘random-looking’ projection of the robot into the 

center of the arena, which is interesting for two reasons. 

First, it supports the idea that a ‘random-like’ component is 
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needed to match observed behavior, regardless of whether 

the random-like behavior was created by a truly random 

controller as in May et al., 2006 [1] or a complex 

deterministic controller as evolved in this study. As 

discussed in May et al. 2006 [1], random-like behavior need 

not result from truly random commands, but in biological 

organisms, it could be, for example, the result of developing 

motor systems. Secondly, our results illustrate the potential 

complexity of sensory-dependent controllers that may be 

required to produce realistic behavior. The controllers we 

evolved were complex, with each sensor contact followed 

by possibly three motor commands in succession. In effect, 

this work and our past work bounds the rat-pup controller 

problem at the controller extremes, from a simple random 

controller (May et al. 2006 [1]) to a complex deterministic 

controller (current study). Indeed, we have shown that both 

extremes can produce apparently realistic rat-like behavior 

for individuals. A promising future line of study would mix 

deterministic and stochastic controllers. Finally, more 

investigation needs to be conducted into group behavior. 

May et al. 2006 [1] showed random-robot behavior metrics 

intermediate between 7-10 day old pups in individuals and 

groups. However, a recent study by May et al. 2011 [6], 

which studied only group behavior, showed metrics that 

match random-robot group behavior and 7-day old group 

behavior. But, random-robot group behavior and 10-day old 

group behavior did not match. This may imply that near 10-

days of age, behavior shifts depending on isolation vs. 

group contexts [3]. However, more investigation with both 

random and non-random models, and different age rat pups 

needs to be conducted before any conclusions can be drawn. 
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