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Abstract: In this paper, we describe an analysis of the nonlinear dynamical phenomenon associated with a silicon neuron. Our 
silicon neuron integrates Hodgkin-Huxley (HH) model formalism, including the membrane voltage dependency of temporal 
dynamics. Analysis of the bifurcation conditions allow us to identify different regimes in the parameter space that are desirable 
for biasing our silicon neuron. This approach of studying bifurcations is useful because it is believed that computational 
properties of neurons are based on the bifurcations exhibited by these dynamical systems in response to some changing 
stimulus. We describe numerical simulations and measurements of the Hopf bifurcation which is characteristic of class 2 
excitability in the HH model. We also show a phenomenon observed in biological neurons and termed excitation block. Hence, 
by showing that this silicon neuron has similar bifurcations to a certain class of biological neurons, we can claim that the 
silicon neuron can also perform similar computations. 
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1 INTRODUCTION 

Neuromorphic engineering is a research field where 

microelectronics meets biology. The link between both is 

done by computational neurosciences which model and 

emulate a part of brain activity. Neuromorphic systems 

emulate biological structures in the hope of retaining its 

remarkable computational efficiency. Analysis of the 

bifurcation is useful because it is believed that 

computational properties of neurons are based on the 

bifurcations exhibited by these dynamical systems in 

response to some changing stimulus [1] [2]. These artificial 

systems would be useful to neuroscientists for exploring 

neural computation. Contrarily to computer simulation, 

analog circuits are inherently suitable for simulating 

differential equations in real time and in parallel [3]. The 

hardware simulation further facilitates the building of a 

hybrid network connecting artificial and biological neurons 

to create a real-time loop or can be even used to replace 

nonfunctional neurons as a prosthesis. 

Pioneering work in modeling the dynamics of a 

biological neuron was done by Hodgkin and Huxley (HH) 

[4]. In the most detailed family of neuron models, known as 

conductance-based models, ionic and synaptic currents 

charge and discharge a capacitor representing the neuron      

membrane. All of these models find their origins in the HH 

formalism. Each ionic channel (sodium, potassium, 

calcium, etc.) is represented by a time and voltage 

dependent conductance: this electrophysiological 

description makes these models particularly well-suited to 

an implementation involving analog electronics [5]. The 

main advantage of this formalism is that it relies on 

biophysically realistic parameters and describes individual 

ionic and synaptic conductances for each neuron in 

accordance with the dynamics of ionic channels.  

Hodgkin classified biological neurons mainly into two 

classes according to their response properties to a sustained 

current stimulus [6]. The cells that show Class 1 neural 

excitability can fire with an arbitrarily low frequency by 

applying a sufficiently close-to-threshold current. The 

frequency increases monotonically as the current increase. 

The cells that show Class 2 neural excitability transitioned 

from silence to firing at an arbitrary nonzero frequency. 

Furthermore, the Class 1 characteristic is can be associated 

with a saddle-node bifurcation at the transition from silence 

to spiking. As shown by bifurcation analysis, the Class 2 

excitability is observed when the resting state loses its 

stability via an Hopf-bifurcation. 

The Hodgkin-Huxley model belongs to Class 2. Its 

dynamical properties  with a constant stimulus have been 

studied extensively [7] [8], and these have shown that the 

Class 2 neural excitability of the HH model is generated by 

Hopf bifurcations. 

Innovative work in modeling of a simplified silicon 

neuron that exhibits HH type dynamics was done in [9] and 

in [10]. On the other hand, some designs have faithfully 

replicated full Hodgkin-Huxley dynamics, resulting in large 

footprints for each neuron [5]. We implement in our chip 

the HH model with an approximation: we use a fixed time 

constant to reduce the silicon area required by the neuron 

implementation in the chip. In this paper we present an 

analysis of the nonlinear dynamical phenomenon associated 
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with our silicon neuron. We show a Hopf bifurcation which 

is characteristic of class 2 excitability in the HH model in 

our approximated model. We also show a phenomenon 

observed in real neurons and termed excitation block. 

  

2 HH MODEL IN VLSI 

2.1 The Hodgkin-Huxley Formalism 
We chose to implement neuron model following the 

Hodgkin-Huxley formalism. Electrical activity of a neuron 

is the consequence of the diffusion of different ionic species 

through its membrane. The HH formalism provides a set of 

equations and an equivalent electrical circuit which 

describes conductance phenomena.  

The current flowing across the membrane is integrated 

on the membrane capacitance, according to expression (1): 

SI
M

M I + I- = 
dt

dV
C ∑   (1) 

where VM is the membrane potential, CM is the 

membrane capacitance, and IS is a stimulation or synaptic 

current. II is the current for a given channel type and its 

associated equation is: 

)E.(V.h.mgI IM
qp

II −=  (2) 

where gI is the maximum conductance; m and h 

represent the activation and inactivation terms, respectively. 

They are dynamic functions, which describe the 

permeability of membrane channels to its specific ion. EI is 

the ion-specific reverse potential and p and q are integers. 

According to the first order differential equation (3), m 

relaxes back towards its associated steady-state value m∞, 

which is a sigmoid function of VM (4). The time constant 

for convergence is τm which is also voltage dependent of 

the membrane voltage VM. 
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In (4), VOffset,m and VSlope,m are the offset and the slope of 

the activation sigmoid respectively. The inactivation 

parameter h follows identical equations, except for the sign 

inside the brackets, which is positive. 

The HH model  describes sodium, potassium and 

leakage channels, with p = 3 and q = 1; p = 4 and q = 0; p = 

0 and q = 0 respectively, in expression (2). These channels 

are responsible for action potential generation. For more 

complex activity patterns, such as bursting or the discharge 

of action potentials with adaptation phenomena, additional 

channels such as slow potassium (p=1 and q=0)  and L-

Type calcium for bursting (p=2 and q=1) have to be taken 

into account. Our chip has a large range of validity domains 

for the parameter to reproduce different kind of neurons 

like: Fast Spiking (FS), Regular Spiking (RS), Intrinsically 

Bursting (IB), and Low Threshold Spiking (LTS) [11]. 

Although these HH-type models sometimes exhibit much 

more complex dynamics than the original HH model, they 

share common nonlinear characteristics and dynamics with 

the HH in many aspects. 

2.2 The model dedicated to our integrated circuit 
Our system is composed of our most recent chip called 

Galway and the dedicated board named Ekerö. This chip 

includes analog operators for the computation of the HH 

formalism, and for the construction of neural networks, 

multi-synapses that consist of gathering all synaptic inputs 

in one electronic input. We implement in our chip the HH 

model with an approximation: we use a fixed time constant 

in (3). We made this choice to reduce the size of the chip. 

So the only difference between the model for the VLSI and 

the HH model presented in [12] is the approximation used 

for the gating variable.  

2.3 Hopf bifurcation 
The Hopf bifurcation theory [8] asserts that if a 

parameterized system possesses an equilibrium point and 

two of the eigenvalues of the Jacobian matrix of the system 

linearized around the equilibrium point are conjugate pure 

imaginary numbers and the others have negative real parts, 

one of the following bifurcations takes place as the 

parameter changes:  

1) A bifurcation from a stable equilibrium point to an 

unstable equilibrium point with a stable limit cycle around 

it; or a bifurcation with the opposite direction. We refer to 

this bifurcation as supercritical.  

2) A bifurcation from an unstable equilibrium point to a 

stable equilibrium point with an unstable limit cycle around 

it; or a bifurcation with the opposite direction. We refer to 

this bifurcation as subcritical.  

2.3 Simulation 
To validate our approximation we used continuation of 

solutions in AUTO, an open source mathematical package 

that can produce bifurcation curves for equilibria as well as 

for periodic orbits, to get the complete bifurcation diagram 

of the system. We compare the simulations between HH 

based model and our implemented HH model. 
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Fig. 1. Bifurcation diagram for our approximated model. 
 

 
 

Fig. 2. Bifurcation diagram for HH model. 
 

Fig. 1 shows the resulting bifurcation diagram of our 

HH approximated model where solid thick  and solid thin 

curves represent stable and unstable equilibria respectively 

while solid and dashed circles denote stable and unstable 

limit cycles. It can be seen that the limit cycles are born 

initially through a fold bifurcation of cycles. Both the Hopf 

bifurcations are subcritical as they involve an unstable limit 

cycle. The amplitude of the stable limit cycle keeps on 

reducing until it coalesces with the unstable limit cycle in 

another fold bifurcation. The resting state loses stability via 

the subcritical Hopf bifurcation at the first point HB in Fig. 

1. At the second point HB in Fig. 2, a stable limit cycle and 

an unstable one arise via the fold bifurcation. Bifurcation 

diagram in Fig. 1 illustrate how the repetitive firing 

emerges when we apply sustained stimulus current. Stable 

limit cycle corresponds to repetitive firing.  

For a comparison with HH model, its bifurcation is also 

shown in Fig. 2. The Hopf bifurcation for smaller current is 

subcritical. The limit cycle appears by a fold bifurcation 

and disappears by a supercritical Hopf bifurcation. The 

reduction in amplitude before the subcritical Hopf 

bifurcation is similar to the Fig. 1. It can be seen in Fig. 2 

that the limit cycle is born by a fold bifurcation but 

terminates in a supercritical Hopf bifurcation. The 

bifurcation diagrams shown in Fig. 1 and Fig. 2 share the 

topology in a biologically meaningful range of stimulus 

current. The qualitative nature of the plots (Fig. 1 and Fig. 

2) is similar as the reduction in amplitude of the limit cycle 

before its disappearance is present in both pictures.  

3 RESULTS IN VLSI 

3.1 Firing rate 
In Fig. 1, the system state jumps to the stable limit cycle 

when the stimulus current exceeds the Hopf bifurcation 

point. In this case the firing frequency cannot be zero at the 

bifurcation point for the Class 2. Steps of input current are 

important type of stimulus typically used to characterize the 

behavior of neuron models. The resulting spike frequencies 

for different values of stimulation current are plotted in Fig. 

3. This figure shows a behavior typical of class 2 neurons 

where the spiking frequency does not tend zero upon 

reduction of the input current. In other word, the 

disappearance of the limit cycle is not associated with its 

frequency reducing to zero like in class 1 neurons.  

 

 
 
Fig. 3. Hardware measurements of the frequency versus 
stimulation current curves of our silicon neurons. Arrows 
describes the existence of bistability; onsets of firing are 
different when the stimulus increased or decreased. 

3.2 Effect of current impulses 
Fig. 4 shows the effect of current impulses of different 

values in our silicon neuron. Larger current pulses shifts the 

initial condition beyond the unstable limit cycle leading to 

spontaneous oscillations. We used four different current 

pulses of increasing amplitude to stimulate our silicon 

neuron. It can be seen in Fig. 4 that for the first two case the 

neuron come back to resting state and in the third and 
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fourth case it start the oscillations. This demonstrates the 

existence of the threshold that in our silicon neuron is 0.5 

nA.  

 

 
 
Fig. 4. Hardware neuron membrane voltage depending on 

current impulses. 
 

3.3 Excitation block 
To prove that the silicon neuron reproduces similar 

dynamical properties of biological neuron, we also explored 

the phenomenon known in biology and termed excitation 

block. In this case, there is the cessation of repetitive 

spiking as the amplitude of the stimulus current increases. 

The equilibrium regains stability through a Hopf bifurcation 

which may be subcritical or supercritical. To observe this 

phenomenon a slowly increasing ramp of current was 

injected. In Fig. 5 is showed that for much larger value of 

the stimulus the equilibrium becomes stables again.  

 

 
 

Fig. 5. Measured data of the excitation block where the 
input current is slowly increased. 

4 CONCLUSION 

In this paper, we described an analysis of the nonlinear 

dynamical phenomenon associated with a silicon neuron. 

We implemented an approximated HH model using fixed 

time constant. We showed numerical simulations of the 

Hopf bifurcation which is characteristic of Class 2 

excitability in the HH model. We compared the results with 

the HH model showing that our model shares the dynamics 

with the full HH model. We also showed the firing rate and 

then the phenomenon observed in real neurons and termed 

excitation block. Hence, by showing that this silicon neuron 

has nonlinear dynamical phenomenon similar to a certain 

class of biological neurons, we can claim that the silicon 

neuron can also perform similar computations. 
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