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Abstract: Recent imaging techniques enable us to observe activities of hundreds of neurons simultaneously as spike sequences.
The objective of this study is to estimate the network structure based on such spike sequences. Our method is an extension of
existing sparse regression technique, in which we have implemented the following three ideas: (1) Each spike time-series obeys
a non-stationary Poisson process whose Poisson intensity is given by an auto-regression model. (2) Spike response functions are
represented by a linear summation of smooth basis functions. (3) A group-LASSO regularization is applied to obtain a sparse
regression solution. When applied to simulation datasets, our method showed a better estimation performance than that by an
existing state-of-the-art method.
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1 INTRODUCTION

To estimate underlying structures of networks is one big
challenge not only in the field of data mining but also in vari-
ous biological fields. A typical application in the field of neu-
roscience is to estimate the network structure from neurons’
spike sequences. Recently, a variety of high-throughput mea-
surement systems of neural networks have been proposed;
for example, multi-electrode array (MEA) [1] measures neu-
rons’ action potential by inserting an electrode array into a
specific brain region. Another way is a high-throughput Cal-
cium imaging, which is now available with as much as 1000
Hz. Not only these new technologies but also the develop-
ment of sophisticated statistical methods have enabled us to
estimate the network structure based on a rather limited data
amount. Granger causal modeling (GCM) [2] and dynamic
causal modeling (DCM) [3] are such innovative statistical
methods. GCM estimates causal connections between neu-
rons based on the predictability. According to DCM, on the
other hand, we assume a dynamic equation between neurons,
and the total dynamical system is identified by means of, say,
Bayesian statistical method. In this study, we aim to present
a robust network estimation method based on modification
of existing generalized linear modeling (DCM). Since this is
a simple sparse regression technique, it may work especially
when the available data amount is rather small (Fig.1). Here,
estimation of spike response functions has an important role.

The estimation of spike response functions has been done
by hierarchical Bayesian modeling [4, 5], but it has some
concerns on the stability of computation and appropriate set-
ting of priors. In many applications of structure estima-
tion methods, the target network is partially observable, i.e.,
there are some hidden structures which cannot be directly

observed. In such cases, the structure estimation may be af-
fected by indirect relationship between observable elements
through unobservable structures. Even in such hard situa-
tions, there may be a way to separate observable elements
into clusters based on their spike response functions. This
is one advantage of network estimation via the estimation of
spike response functions. Therefore, we put our focus on
network estimation methods based on the estimation of spike
response functions in this study.

2 GENERALIZED LINEAR MODEL

Our method is based on the generalized linear model
(GLM) presented formerly by Stevenson et al. [4]. After
briefly introducing GLM, we describe our extensions.

2.1 Poisson process with an auto-regression model

Let Ni(t) be a random variable denoting a spike event;
when Ni(t) = 1, the i-th neuron emits a spike once in the
t-th frame, and when Ni(t) = 0, it does not emit a spike in
the frame.

Following the formulation by Stevenson et al., each spike
event of neuron i obeys a non-stationary Poisson process with
the time-variant Poisson intensity λi(t). Here, the continuous
time axis is segmented into frames with a fixed interval ∆t >
0, which is small enough to make each segmented time frame
(with a center at t and a width of ∆t) to include at most one
spike event. With these notations, the binary random variable
Ni(t) obeys a Bernoulli distribution: P (Ni(t) = 1|λi(t)) =
1− exp(−λi(t)∆t) .

Stevenson et al. assumed the Poisson intensity is given by
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Fig. 1. Our objective is to estimate the network structure
(right lower panel) from spike sequences over constituent
neurons (right upper panel). In the right-lower matrix, a sym-
bol○ (●) denotes there is an excitatory (inhibitory) connec-
tion from neuron ‘From’ to neuron ‘To’. No circle means no
connection. The left lower panel shows the spike response
functions of nine connections in the right lower panel (inset).
The left upper panel shows a spike response function α2,1(s),
connectivity from neuron 1 to neuron 2.

the following auto-regression model:

λi(t) = λi(t;αi)

= exp

(
αi,0 +

C∑
c=1

M∑
s=1

αi,c(s)Nc(t− s)

)
, (1)

where αi ≡ {αi,0, αi,c(s)|i = 1, · · · , C, c = 1, · · · , C, s =

1, · · · ,M} are coefficients of the auto-regression model.
Since the vector αi,c ≡ (αi,c(s)) represents the connection
from a pre-neuron c to a post-neuron i, it is called a spike
response function.

2.2 Introduction of basis functions

According to the model (1), the spike response function
for a neuron pair (i, c), αi,c, may take an independent value
for each time-delay s, i.e., M -dimensional. Since the spike
response function is determined based on data, this large de-
gree of freedom may be disadvantageous especially when the
delay time is long (M is large). Moreover, since the spike
response function is represented biophysically in reality, it
should be smooth; that is, the difference between αi,c(s) and
αi,c(s+ 1) is not very large. In order to reduce the effective
dimensionality whereas allowing long time delay of the spike
response function, we assume it to be represented by a linear

summation of temporally smooth basis functions:

λi(t) = λi(t;αi) (2)

= exp

(
wi,0 +

C∑
c=1

M∑
s=1

K∑
k=1

wi,c,kbk(s)Nc(t− s)

)
,

where bk(s), k = 1, · · · ,K are K pre-fixed basis functions,
and zi ≡ {wi,0, wi,c,k, i = 1, · · · , C, c = 1, · · · , C, k =

1, · · · ,K} are their linear coefficients (parameters). When
K ≪ M , the effective dimensionality of the spike response
function is much reduced from the original M -dimensional
one, thus the estimation variance from a fixed amount of data
and computational cost are both reduced. Determining the
parameters zi, we have the spike response function αi, be-
cause αi,0 = wi,0 and αi,c(s) =

∑K
k=1 wi,c,kbk(s). When

K = M and bk(s) = I(k = s) , the model (2) becomes
identical to the original GLM (1). Here, I(A) is an indicator
function, which takes 1 if the condition A is true and 0 other-
wise. From this observation, the model with basis functions
(2) is one extension of GLM.

We in particular used logarithmic cosine functions for the
basis functions bk(s)(k = 1, 2, · · · ,K):

bk(s) ≡



cos2(D1 log(1 + (s− 1)D2)π/2− (k − 2)π/4)

(if D1 log(1 + (s− 1)D2)π/2 ∈
[−π/2 + (k − 2)π/4, π/2 + (k − 2)π/4])

0

(else)

.

Here, D1, D2 denotes the scale parameter and is set arbitrar-
ily. These basis functions have fine and coarse temporal res-
olutions when the corresponding delay times are short and
long, respectively. This setting allows the resultant spike re-
sponse function to represent well the rapid change of post-
synaptic membrane potential after the spike input but to re-
duce the effective dimensionality simultaneously.

2.3 Optimization problem
We estimate the linear coefficients of the basis functions,

zi, such to minimize the following loss function with a regu-
larization term:

z∗
i = argminziLi(zi) + ΛG(zi), (3)

where Li(zi) is the loss function for the i-th neuron, and
G(zi) is the regularization term that is explained in the sec-
tion 2.4. Λ > 0 is a balancing factor between the loss func-
tion and the regularization term, whose value is determined
by a cross-validation method such to show a good general-
ization performance.

Since we assume that the random variable 　 Ni(t) ∈
{0, 1}, i = 1, · · · , C, t = 1, · · · , T obeys an independent
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Bernoulli process, the log likelihood is given by

T∑
t=1

logP (Ni(t)|λi(t)). (4)

Since the Poisson intensity λi(t) is determined by the param-
eter vector zi (equation (2)), the log likelihood is a function
of the parameter vector. Then, the maximum likelihood esti-
mation of the parameter vector is equivalent to the minimiza-
tion of the following loss function with the auto-regression
model (2) in terms of the parameter vector zi:

L(zi) = −
T∑
t=1

(Ni(t) log λi(t)− λi(t)) , (5)

where we have used the likelihood of the Bernoulli process.

2.4 Group-LASSO regularization
The regularization term in equation (3) is given by

Gi(zi) =
C∑
c=1

√√√√ K∑
k=1

w2
i,c,k , (6)

which is a kind of group-LASSO regularizer. A linear
regression method employing an L1 regularizer G(L

1)
i =∑C

c=1

∑K
k=1 |wi,c,k| is called LASSO and tends to produce

a sparse solution whose linear coefficient is likely to be zero.
A group-LASSO is an extension such that the sparseness
works in each group of linear coefficients. According to
the regularization term (6), {wi,c,k|k = 1, · · · ,K} consti-
tutes a group, and the variables in a single group are often
estimated as zero simultaneously. In our particular applica-
tion, wi,c,k, k = 1, · · · ,K, should be simultaneously zero
if a neuron pair (i, c) has no connection. When applying to
estimation of neuronal network structure, therefore, a group-
LASSO-based regularization method would work well.

3 SIMULATION
The proposed method was applied to simulation spike

datasets.

3.1 Simulation setting
Simulation 1 Kim et al. [2] prepared a network model con-
sisting of nine neurons (Fig. 2), and produced a spike dataset
by introducing specific spike response functions to the con-
nected neuron pairs. Although the spike response functions
are not presented, the simulated spike sequence is open for
public1. The spike sequence with a frame rate of 1,000 Hz is
for 100,000 frames (100 seconds).

1http://www.neurostat.mit.edu/gcpp

Fig. 2. The connection matrix showing the true network
structure in simulation 1
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Fig. 3. The true spike response function and its estimation in
simulation 2. The figure shows spike response functions be-
tween three neurons out of nine neurons. A dotted line is the
true one. A thick solid line and a thin solid line show the es-
timated response functions with and without the logarithmic
cosine basis functions, respectively.

Simulation 2 Since the true spike response functions are
unknown in the Kim et al.’s dataset, we did a simulation by
applying our own spike response functions (therefore, we
know the truth) to the same network structure as that used
by Kim et al.

3.2 Estimation of spike response functions

Fig. 3 shows the spike response functions obtained by ap-
plying the proposed method to the dataset in simulation 2.
In particular, this figure shows the performance of the log-
arithmic cosine bases, which can be seen by comparing the
group-LASSO regression with (thick solid line) and without
(thin solid line) logarithmic cosine basis functions. In both
cases, the regularization coefficient Λ was set at 10. We can
see that the smoothness constraints due to the logarithmic
cosine functions worked well to obtain smooth and hence bi-
ologically natural response functions.
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Fig. 4. Network estimation when applied to the dataset of
simulation 1. A dotted line and a solid line show the AUC
values by Kim et al. and our method, respectively.

3.3 Estimation of network structure
Based on the estimated spike response functions, we can

estimate the network structure.
We say there is an excitatory (inhibitory) connection from

a pre-neuron c to a post-neuron i if the auto-regression co-
efficient αi,c(s) is consistently positive (negative) for all de-
lay times s = 1, · · · ,M . We also say there is no connec-
tion from c to i if αi,c(s) is consistently zero. However, it
may be the case of estimation that αi,c(s) is positive with
some delay times but negative with other delay times. Such
an estimation result may be obtained due to the estimation
variation and/or to the mixture of direct effects and indi-
rect (i.e., multi-synaptic) effects. In order to extract a rea-
sonable structure from such ambiguous spike response func-
tions, we needed a heuristic criterion; by defining the connec-

tivity strength: Qi,c =
√∑M

s=1 α
2
i,c(s) and the connectivity

polarity: Ri,c = sign(
∑M̃
s=1 αi,c(s)), M̃ < M we deter-

mined as follows, either excitatory, inhibitory or no connec-
tion from pre-neuron c to post-neuron i.

• If Qi,c > h and Ri,c = 1, an excitatory connection.

• If Qi,c > h and Ri,c = −1, an inhibitory connection.

• If Qi,c < h, there is no connection.

In the above criterion, h is a positive threshold to be pre-
tuned. Although we tuned it heuristically in this experiment,
it should be determined by controlling the false positive rate
in more realistic applications [2].

In our method, we obtained spike response functions from
the given spike dataset, and then the network structure was
determined by applying the above criterion to the estimated
spike response functions. We also applied the network esti-
mation method by Kim et al. to the same dataset. Here, we
examined the estimation performance by varying the number
of frames (i.e., sequence length).

From Fig. 4, we can say that the proposed method shows a
good performance for network estimation over a wide range
of available number of frames. Here, AUC (area under the

receiver-operator curve) shows the general accuracy by inte-
grating both of the false positive rate and false negative rate;
the larger it is, the better the classifier is.

4 CONCLUSION AND DISCUSSION
In this study, we presented a GLM-based network es-

timation method employing smooth basis functions such
to reduce the effective dimensionality whereas maintain-
ing the representation capability of the model. In addition,
the group-LASSO-type regularization introduced an effec-
tive and biophysically natural sparseness into the estimation,
and hence was effective for stabilizing the estimation.

There are some remaining issues in our network estima-
tion method. First, performance of network estimation will
be deteriorated when the target network receives structured
inputs from external networks. One possible solution is to in-
corporate location information of each network element into
our model. Second, we have not established a good crite-
rion to extract the network structure from the estimated spike
response functions. We have applied a cross-validation tech-
nique to determine the threshold value in the criterion, but
also found its result behaves unstably especially when the
data amount is not sufficient. There are some remaining is-
sues like above, and we will cope with them in our future
study.

REFERENCES
[1] Heuschkel MO, Fejtl M, Ragenbass M, et al (2002), A three-

dimensional multi-electrode array for multi-site stimulation
and recording in acute brain slices. Journal of Neuroscience
Methods, 114(2):135 – 148

[2] Kim S, Putrino D, Ghosh S, et al (2011), A granger causality
measure for point process models of ensemble neural spiking
activity. PLoS Computational Biology, 7(3):e1001110

[3] Penny ND, Stephanand KE, Moran RJ, et al (2010), Ten
simple rules for dynamic causal modeling. NeuroImage,
49(4):3099–3109

[4] Stevenson IH, Rebesco JM, Hatsopoulos NG, et al (2009),
Bayesian inference of functional connectivity and network
structure from spikes. Neural Systems and Rehabilitation En-
gineering, 17(3):203–213,

[5] Yoshimoto J, Doya K (2011), Model-based identification of
synaptic connectivity from multi-neuronal spike train data (in
Japanese). IPSJ SIG Technical Report, 2011-BIO-25(4)

ACKNOWLEDGMENT
This study was supported by Grant-in-Aid for Scientific

Research on Innovative Areas:“Mesoscopic neurocircitry
towards understanding of the functional and structural basis
of brain information processing”from MEXT, Japan.

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12), 
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 721




