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Abstract: Rules such as laws, institutions, and norms can be changed dynamically in our society, because they are shaped by
interactions among social members who are affected by them. However, there are also some stable rules enhanced by interactions
among rules. In this article, we discuss whether or not rules can be stabilized by interactions among the rules. To investigate
this, we propose a multi-game model in which different games are played simultaneously by the dynamic cognitive agents. A
minority game (MG) and an n-person iterated prisoners’ dilemma game (NIPDG) are adopted. In our simulation, we found that
the agents internalize the complex rules expressed as intricate geometrical shapes like strange attractors on the phase spaces,
when the complex macro dynamics emerged. Furthermore, it showed that the macro dynamics shaped by the macro rules in the
MG can be stabilized by interaction between the MG and the NIPDG rules internalized in the agents.

Keywords: Dynamic cognitive agent, Internal dynamics, Minority game (MG), Multi-game, N-person iterated prisoners’
dilemma game (NIPDG), Simple recurrent network with self-influential connections (SRN-SIC)

1 INTRODUCTION

There are many behavioral guidelines that have an influ-
ence on determination of our actions in our society. Rules
such as laws, institutions, and norms can be regarded as the
guidelines. We focus here on the institutions as the rules.
North[1] claims that the institutions establish stabilities of
themselves by making complex aggregates of them. Many
institutions mutually support each other, and their functions
are enhanced by other institutions. Aoki[2] defines this en-
hancing effect as institutional complementarity.

On the other hand, Nishibe[3] proposes an institutional
ecology. This institutional ecology is defined as a dynamical
system in which many institutions can be shaped and fluctu-
ated through changes of human cognitions and behaviors by
interactions among the institutions. He claims that the insti-
tutional ecology becomes a complex system, and diversity of
the institutions is maintained, because the interactions among
them are nonlinear.

The purpose of this article is to discuss whether or not
rules can be stabilized through interactions between the rules
actually. According to North’s interpretation[1], the institu-
tions are distinguished between formal and informal insti-
tutions. We refer to the formal institutions as global rules
and the informal institutions as local rules. In this study,
we assume that the local rules are the global rules internal-
ized in the individuals and play an important role to stabilize
the global rules and the macro dynamics based on the global
rules, because their actions are affected by each internalized
rules, and the global rules are shaped by the actions of all
individuals.

In order to investigate what effects the interactions be-
tween the local rules of the individuals have on the stabiliza-
tion of the global rules and the macro dynamics, we propose
a multi-game model in which different games are played si-
multaneously by the dynamic cognitive agents who can in-
ternalize the rules through the learning process.

2 MULTI-GAME AND DYNAMIC COGNITIVE

AGENT AS ITS PLAYER

2.1 Multi-game

We propose a multi-game model in which players play
many types of games simultaneously. This is a game theo-
retical model to investigate what kind of the macro dynamics
of the games the interactions between the rules internalized
in the players form, and what rules for forming the dynam-
ics the agents internalize through the learning process. The
minority game (MG)[4] and the n-person iterated prisoners’
dilemma game (NIPDG)[5] are adopted here.

The MG is a simple game, where n (odd) players must
select one out of two actions (e.g., -1 or 1, like buy or sell)
independently, and those who are on the minority side win.
The NIPDG is a version of the IPDG with many players. In
this study, we define the NIPDG as follows: each player has
to choose one of two actions, defection (D) and cooperation
(C) individually; the players who chose D always win if there
is one or more player who chose C; namely, when all players
select D, they lose. In the multi-game, the actions D and C in
the NIPDG are expressed as -1 and 1, respectively.
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2.2 Dynamic cognitive agent as its game player
We adopt a model of the dynamic cognitive agent with in-

ternal dynamics represented by a simple recurrent network
with a self-influential connection (SRN-SIC), as proposed in
our previous work[6] and illustrated in Fig.1. The internal
states of humans change even in the situations in which the
same external stimulus is constantly given or when no exter-
nal stimulus is given. We refer to this autonomous change of
the internal states as the internal dynamics.
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Fig. 1. The SRN-SIC proposed in our previous work as an archi-
tecture of a dynamic cognitive agent with internal dynamics.

The SRN-SIC is an Elman-type network[7] modified by
adding recurrent connections between the output and input
layers so that the agent can determine his/her own action
based on his/her own past action, and the internal dynamics
is produced by the recurrent connections.

2.3 The procedure of the multi-game
The procedure of the multi-game is as follows:

1. Except for initial time step, each agent independently
decides their actions for the games based on their own
past actions, internal states, and the results of the games
at the last play.

2. A current game results, namely, winners’ actions, are
determined from all agents’ actions.

3. The step is given an increment and goes to 1.

The procedure from 1 to 3 is called one step. By error
back-propagatkon (BP) learning algorithm, all agents learn a
time-series of the winners’ actions in the games every 10,000
steps. A teacher’s signal is the sequence of the actions at the
last 100 steps immediately before the learning. We refer to
the 10,000 steps as one turn between the learning processes.

3 SIMULATION RESULTS
Before describing the results, let’s give the specification

of the simulations1. The games are played until 10,000,000
steps; namely, 1,000 turns. The population size of the agents
is 101.

1The settings and mathematical expressions of the SRN-SIC are omitted
due to space constraints and for details to Sato and Hashimoto[6, 8].

3.1 Occurrence frequency of complex macro dynamics
First, we observe the macro dynamics expressed by a

time-series of winners’ actions in the games. Most of the
macro dynamics have short period numbers, but sometimes
complex macro dynamics represented as aperiodic motions
are shaped, as illustrated in Fig.3 to be hereafter described.
Fig.2 shows the average numbers of occurrences of the com-
plex macro dynamics emerged in the games.
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Fig. 2. Average numbers of occurrences of the complex macro
dynamics in each game.

The two bar graphs on the left-hand side of Fig.2 indicate
that the complex macro dynamics hardly emerge when the
agents played the NIPDG and the NIPDG simultaneously.
The middle two bar graphs of Fig.2 depict the results of the
combination between the MG and the NIPDG. In this case,
the complex macro dynamics in the MG is suppressed, al-
though the MG is easy to shape such dynamics. The last two
bars on the right-hand side of Fig.2 show the results in case
that the agents played two MGs coinstantaneously. As can
be seen, the number of occurrences of the complex macro
dynamics is the highest of three types of game combinations.
Also note that, in case of playing the MG by one group inde-
pendently, the average number of occurrences of the complex
macro dynamics is twenty and it was confirmed in our pre-
vious work[9]. Therefore, these results suggest that the rules
shaped in the NIPDG hold enormous potential to stabilize the
macro dynamics strongly, although the MG has a possibility
to destabilize macro dynamics of the other game. However,
the combination between the MG and the MG generates a
synergistic effect to raise the frequency of occurrences of the
complex macro dynamics.

3.2 Differences between the MG and the NIPDG
Second, we confirm the differences of the MG and the

NIPDG from the viewpoint of the macro dynamics and the
rules internalized in the agents.

Fig.3 show the examples of the complex macro dynamics2

that emerged in the both of combined games simultaneously.
Fig.3(a) illustrates the macro dynamics shaped in the MG

2The x-axis and the y-axis of each figure are the steps and the time-series
of winners’ actions converted to real numbers, respectively.
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(a) Macro dynamics shaped in the MG and the NIPDG (b) Macro dynamics shaped in the MG and the MG
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Fig. 3. Examples of complex macro dynamics.

(a) Internalized rules in the MG and the NIPDG (b) Internalized rules in the MG and the MG

Fig. 4. Examples of rules internalized in the all agents through the learning process.

(left column) and the NIPDG (right column). Both of the
dynamics are aperiodic, but change pattern of winners’ ac-
tions in the NIPDG (right column) is relatively-monotonous
than that of the MG (left column). In contrast, both the macro
dynamics shaped by all agents who play two MGs simulta-
neously are very complex, as illustrated in Fig.3(b).

Fig.4 depicts the rules internalized in all agents who
form the complex macro dynamics as illustrated in Fig.3.
These rules are expressed as intricate geometrical shapes like
strange attractors on the phase spaces which represent the re-
lationship among two output and two hidden values3. The
black and the red trajectories in Fig.4(a) are the internalized
rules in the MG and the NIPDG, and that in Fig.4(b) are both
the internalized rules in the MG, respectively.

As can be seen, each agent has two different rules to de-
cide thier actions for the games. Furthermore, the points on
the phase space of most of internalized rules illustrated in
Fig.4(b) are so dense obviously. Most of these rules creates a
one-to-many relationship from an input to the agent’s actions,
because the points on the phase space ranges over almost the
entire area of the output (the x-axis on the phase space). That
is to say: the rules internalized in the agents who play two
MGs simultaneously, as illustrated in Fig.4(b), is more com-
plex than that of the combination between the MG and the
NIPDG, as illustrated in Fig.4(a).

3The x, y and z-axes of each figure are the values of the output neurons,
the 1st and the 2nd hidden neurons, respectively.

3.3 Complex structures of internalized rules
In the previous section, we confirmed that the agents

can internalize with different complex rules for each game
through the learning process. Fig.5 gives the examples of the
complex rules internalized in the agents in detail.
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Fig. 5. Examples of complex internalized rules like combination
between limit cycles and finite automaton with many states (a) and
strange attractors (b).

Fig.5(a) shows the complex rules expressed by two com-
binations of limit cycle and finite automaton with many
states. This means that the agent has the rules that can switch
two action sequences with short and long periods according
to the external stimuli.

Fig.5(b) can be easily imagined that the agent having this
rule can output apperiodic actions. The aperiodic action may
be chaotic dynamics. Chaotic dynamics has orbital insta-
bility, which expands small differences in the trajectories of
agents’ actions. Therefore, even a small displacement in an
agents’ group can induce a change in the macro level dynam-
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ics, if the number of agents with the rule that can generate
the time-series of chaotic actions is much larger than that of
agents without it. However, in case of playing two different
games that can stabilize and destabilize the macro dynamics
easily, it is considered that the agents are difficult to acquire
the rules that can generate chaotic actions.

3.4 Degree of concordance of internalized rules
Finally, we analyze whether or not there is a difference

between the internalized rules for the MG and the NIPDG
and the ones for the two MGs. In comparison with the rules
for the two MGs, it is often the case that both the rules for the
MG and the NIPDG have similar or symmetric structures, as
illustrated in Fig.4. This suggests that both actions decided
by the rules for the MG and the NIPDG depend on the values
of the same hidden neurons.

Fig.6 shows the degree of concordance of the internalized
rules that are observed in the combination of the MG and
the NIPDG and in the combination of the two MGs. The
degree of concordance of the internalized rules is calculated
as follows: correlation coefficients between each value of the
output and the hidden neurons are calculated; the numbers of
combinations between such neurons with strong coefficients
(0.7 and more) are counted every the agents; the numbers
are averaged for 1,000 turns; the averaged numbers are also
averaged by the number of the agents.
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Fig. 6. Degree of concordance of rules internalized in agents

We found that there is subtle but important difference. The
results in Fig.6 mean that the actions decided by both of the
rules for the MG and the NIPDG are dependent on the values
of the same hidden neurons than the ones determined by the
rules of the two MGs. This can be interpreted that both the
rules for the MG and the NIPDG have the same partial struc-
tures, and such structures can be internalized at an early stage
of the games, because the agents shape only simple macro
dynamics at the early stage even though they play the MG.

4 SUMMARY AND CONCLUSION
We proposed a multi-game model in order to investigate

whether or not the interactions between the rules internalized
in the individuals have an influence on the stabilization of

the rules and the macro dynamics shaped by the rules. In this
model, different games are played simultaneously by the dy-
namic cognitive agents who can internalize the rules through
the learning process.

The simulation results showed that the agents can internal-
ize different complex rules represented as strange attractors,
but the agents are difficult to acquire the rules that can gen-
erate chaotic actions when playing simultaneously both two
different games, where the macro dynamics can be stabilized
easily in at least one of the games. Furthermore, we con-
firmed that both the rules for the MG and the NIPDG have
the same partial structures, and it was suggested that such
structures can be internalized at an early stage of the games,
because the agents shape only simple macro dynamics at the
early stage even though they play the MG.

From these results, we conclude that the followings are
the important to stabilize the macro dynamics; the agents in-
ternalize different rules for each game in which at least one of
the games has a feature to stabilize the macro dynamics eas-
ily, and the ones have the common partial structures between
the different rules at an early stage of the games.
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