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Abstract: Mental representation is a fundamental aspect of advanced cognition. An understanding of the evolution of mental 

representation is essential to an understanding of the evolution of mind. However, being a decidedly mental phenomenon, its 

evolution is difficult to study. This research addresses the question of how representation ability may emerge from non-

representational cognition. We reformulate cognitive map ability, a paradigm case of mental representation, in terms of second 

order learning. We provide a neural network species with neural mechanisms for second order change and evolve them in an 

environment of randomly generated Tolman mazes, known to require mental representation. Some runs of this model evolve 

near-optimal performance, providing support for the hypothesis that mental representation is evolved second order learning. 
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1 INTRODUCTION 

Mental representation (MR for short) is, abstractly put, 

the ability to simulate or reconstruct in the mind aspects of 

the environment that lie outside the scope of one's current 

perception. The type of MR we focus on in this paper is the 

ability to navigate using "cognitive maps": mental represen-

tations of the layout of an environment (see Tolman [1]). 

Much of an environment may lie outside one's view, but 

mental representation of these parts makes it possible to 

take those parts into account nonetheless. Other types of 

MR are "mental time-travel" and "theory of mind" (see Ta-

kano & Arita [2], Minoya, Arita & Omori [3] for computa-

tional approaches to the latter). There too, inaccessible as-

pects of the environment (respectively: future and past, 

other minds) are mentally simulated or reconstructed. 

The evolution of MR is not well-understood. MR is a 

highly structured and organized form of cognition, and al-

ready in the early decades of connectionism, it has become 

clear (contrary to common intuition) that adaptive processes 

such as evolution or learning do not, in general, produce 

such structured or organized AI (see e.g. Fodor & Pylyshyn 

[4]). This raises the question how MR can have evolved in 

biological cognitions. We propose that the representational 

nature of MR emerged from the interaction between adapta-

tion processes, specifically: first and second order learning. 

We provide a proof of concept for this hypothesis in the 

form of a computational model in which a neural network 

species with the basic elements for second order change is 

evolved in an environment composed of maze tasks gener-

ally believed to demand cognitive map ability. If second 

order learning can be evolved into MR, this may improve 

our understanding of the evolutionary transition from non-

representational to representational cognition. 

2 TOLMAN MAZES 

In experimental psychology, MR ability in biological 

species is often studied using Tolman mazes [1]. A Tolman 

maze has multiple paths from its start to its goal. Exploring 

the maze, subjects latently learn to take the shortest path. 

Subsequently, the shortest path is blocked, meaning they 

have to switch to a different path. However, the maze is set 

up so that after blockage of the shortest path, the new opti-

mal choice of path depends on the location of the blockage 

(Fig. 1). Many species need to re-learn on the altered lay-

out, while some species find the new optimal path without 

additional exploration (needing merely to observe the posi-

tion of the blockage). The standard explanation is that the 

former category of species does not acquire a mental repre-

sentation (cognitive map) of the maze during initial explo-

ration, while the latter does. Animals that have acquired a 

representation of the maze can exploit that representation to 

infer the new optimal path without additional exploration. 

 

 
Fig. 1. Generated Tolman maze on 7x7 grid.  

S: Start G: Goal. Dot colours indicate path lengths. 

Blue circles indicate possible locations for the  

blockage. Blockage on the left blue ring obstructs 

only the short path, while blockage on the right blue 

ring blocks both the short and medium path. 
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3 HYPOTHESIS 

Here we propose a different explanation, in terms of 

second order learning. MR can be viewed as acquired iso-

morphism between a mind’s content and its environment. It 

has previously been established that innate isomorphism 

can emerge from interactions between evolution and learn-

ing (Arnold [5]). Acquired isomorphism might similarly 

emerge from interactions between first and second order 

learning. 

Let us first give a working definition of first order learn-

ing: “advantageous change in behaviour, caused by expo-

sure to pertinent information”. Second order learning, then, 

must be advantageous change in (first-order) learning, 

caused by exposure to pertinent information. When after 

blockage of the shortest path in a Tolman maze a subject 

infers the new optimal path without additional exploration, 

we can view this inference as a split-second learning proc-

ess: exposure to pertinent information (observation of the 

location of the blockage) produced an advantageous change 

in behaviour (the subject abandons the blocked path and 

switches to the new optimal path). Viewing it as such re-

quires that we explain how this (first order) learning proc-

ess can produce such a fast and effective behaviour-update 

(the information in the observation alone does not suffice to 

explain the update). Our explanation is that during explora-

tion, not just the animal’s behaviour has adapted to the 

maze (via a learning process), but that that learning process 

itself has been adapted to the maze as well. In other words, 

a second-order learning process optimized the (first-order) 

learning process to the current environment: the optimal 

change in behaviour (from selecting the blocked path to 

selecting the optimal path) has come to be causable by 

minimal information: mere observation of the location of 

the blockage has come to trigger this behaviour-update. 

.

 
Fig. 2. Learning and isomorphism (MR). 

 

A second order learning process associates possible fu-

ture observations with suitable behaviour updates. This may 

sound infeasible, and for almost all first order learning 

schemes, it is. But if the first order learning scheme pro-

duces behaviour-implementations that are isomorphic with 

the environment, then second order learning suddenly be-

comes quite feasible: simply keeping the behaviour-

implementation isomorphic with the environment (i.e. up-

dating it continuously with present perception) keeps the 

behaviour optimal with respect to that environment. So 

when there is selection pressure on second order learning, 

then indirectly there is selection pressure on isomorphism-

based first order learning schemes. Mental representation, 

then, could be this isomorphism. 

The proposed reformulation might seem highly specific 

to the case of Tolman mazes, but equivalent reformulations 

can be given for many or all other situations that involve 

MR. We omit detailed examples here, but the general form 

is as follows. Consider an environmental object X to be 

represented. We (should) perceive our subject as represent-

ing X if and only if it can pre-emptively adjusts its behav-

iour so as to avoid or bring about specific unseen situations 

involving X after some period of observation of X. In all 

such cases, observation affects future changes in behaviour. 

To the extent such pre-emptive adaptation characterizes 

MR, explanation in terms of second-order learning should 

be applicable. In the focal case of cognitive maps, X is the 

maze, but the general scheme may equally well describe a 

scenario of spontaneous novel tool use (a scenario generally 

recognized as involving MR), with X being the tool. 

 

4 MODEL 

We test the hypothesis using a model in which neural 

nets with the basic elements for second order neural change 

are evolved in an environment composed of Tolman mazes. 

Each individual’s fitness is assessed on multiple Tolman 

mazes (randomly generated continuously over the course of 

the experiment). In each maze, the agent first gets 150 time 

steps to explore the maze (exploration phase), is then 

placed back at the start position and given exactly enough 

time steps to reach the target over the shortest path (exploi-

tation phase). On a portion of the mazes, the shortest path is 

blocked at the start of the exploitation phase. When the 

agent arrives at the blockage, its remaining time steps are 

again set so as to make it only just possible to reach the 

target. Fitness is awarded for reaching the target. A popula-

tion of size 100 is evolved, using a genetic algorithm with 

mutation but no crossover. 

In addition to standard (activatory) connections, the 

network species has connection types that can be wired up 

to create second order changes in behaviour. These connec-

tion types are (1) activatory connections with lag, and (2) 

neuromodulatory connections. That two mechanisms are 

provided is merely to improve flexibility so as to facilitate 

evolution. Theoretically, one mechanism should suffice. 

(1) Activatory connections with lag. These transmit ac-

tivation signals much like standard connections, except 

with a short delay. This makes it possible for the nets to 

retain activation patterns over time. This sort of connection 

is common in recurrent neural networks. Retention of acti-

vation makes it possible for perception of a stimulus to af-
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fect behaviour at some later point in time. For long-term 

change, one needs loops (in the simplest case, a single re-

flexive connection). Trivially, second order behaviour 

change can be construed too: if a retained local activation 

pattern A somewhere in a net affects behaviour, and another 

retained local activation pattern B affects A, then B has a 

second order effect on behaviour. 

(2) Neuromodulatory connections. These connections 

convert activation into "modulation": the pre-synaptic neu-

ron's activation arrives at the post-synaptic neuron as modu-

lation. Typically, a neuron's modulation determines its con-

nections' plasticity, in a simple (e.g. Hebbian) weight up-

date rule (see Soltoggio et al. [6]). We let a gene pick from 

among a number of update rules (various combinations of 

pre- and post-synaptic activation and modulation values). 

Connection weight changes can change behaviour, and 

again quite trivially, they can change change in behaviour, 

too. Say change in connection X affects behaviour. Then 

weight change in connections that control change in X has a 

second order effect on behaviour.  

Naturally these mechanisms can also be combined to 

create second order dynamics. Fig. 3 gives a schematic rep-

resentation of the four possible circuits that produce second 

order dynamics (provided the connections are non-zero). 
 

 
Fig. 3. Genotypic circuits for second order change. 

Any of these combinations occurring along a path 

from input to output neurons can cause second order 

changes. Arrows marked with M are modulatory  

connections. The lagged reflexive connections may  

produce local instead of reflexive connectivity in the 

phenotype, but either can support sustained change. 

  

Informed by what’s known about the neurology of spatial 

representation (See Moser et al. [7] for a review), we let the 

genotype encode not simple neurons, but neuron grids. We 

use square grids of three sizes: 1x1, 3x3, and WxW, where 

W is the size of the world (7 for our 7x7 world). Given the 

setup of the model, sizes larger than W offer no additional 

functionality (i.e. WxW is functionally equivalent to an 

infinite grid). The peculiar 3x3 size is included because it 

can concisely encode directional information. Connectivity 

is defined on two levels: inter-grid and intra-grid. 

Intra-grid all connections are of the lagged activatory 

type. They can be reflexive or local. If a grid has a reflexive 

connection to itself, this means that all neurons in the grid 

get a reflexive connection to themselves. A local connection 

means that each neuron has connections to its four 

neighbours in the grid. So, connectivity within a grid is 

uniform (the genotype essentially defines connectivity for a 

single neuron, and the number of copies to make of that 

neuron). Propagation within a grid runs at a faster (24x) 

timescale than propagation among grids. Observe that re-

flexive connections allow retention of an activation pattern 

on a grid, while local connections lead to diffusion of acti-

vation patterns over time.  

Grids can be connected by any connection type other 

than lagged activatory connections. If the genotype defines 

a connection between two grids, then the phenotype gets 

uniform connectivity between the neurons in the two grids. 

If the grids are equal in size, connectivity is one-to-one, 

otherwise all-to-all. This leads to a highly symmetrical con-

nectivity, which by itself would cause the activation within 

a grid to remain uniform and redundant. This symmetry is 

broken by our neurotransmitter logic. 

There are two global "neurotransmitter" values, nt-Bx 

and nt-By. These dynamically control (in two dimensions, 

as the neuron grids are 2D) which connection subsets of an 

all-to-all projection can transmit activation. When both are 

zero, then this set comprises connections linking corre-

sponding neurons in the grids (e.g. the centre neuron in the 

pre-synaptic grid to the centre neuron in the post-synaptic 

grid). Non-zero nt-B values cause simple offsets, as illus-

trated in Fig. 4. Currently, nt-Bx and nt-By values are hard-

wired to reflect the agent's current x-coordinate and y-

coordinate, so signal transfer can shift along with position 

in space. This makes it relatively easy for evolution to de-

vise nets that store information in different locations in a 

grid depending on their own position in space: if a smaller 

grid projects to a larger grid, then the activation pattern on 

the smaller grid affects only a sub-region of the larger grid. 

We will call this sub-region the focal area of the smaller 

grid on the larger grid. Nt-B does not correspond directly to 

any biological neurotransmitter, but can be reduced to a 

biologically plausible neurotransmitter via a trivial network 

transformation (which increases network size dramatically). 

Inclusion of coordinates in the input is unnatural, but 

preliminary experiments with a simple spatial memory task 

have shown it quite possible with our model to evolve 

agents that keep track of their own coordinates. Cognitively 

interpreted, the coordinates in the input and their linkage to 

the nt-B values make it trivially easy to evolve an innate 

sense of space as an extended medium in which movement 

predictably changes one's position. Construction of the abil-

ity to represent the volatile and non-uniform contents of 

space, however, is left to evolution. 

The nets have one 3x3 grid and a number of 1x1 grids 

(i.e. single neurons) receiving input. The 3x3 grid encodes 

for each of the four cardinal directions whether there is a 

wall in that direction (on the 4 neurons adjacent to the mid-

dle neuron). The 1x1 grids encode whether the current posi-
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tion is the start position, whether the current position is the 

goal position, and the current phase (exploration or exploi-

tation). Additionally, there are input neurons for bias (al-

ways 1.0) and noise (random real numbers from [0,1]). 

Output is read from two 3x3 grids. From the four neurons 

corresponding to the cardinal directions, the one with the 

highest activation is selected, and movement in that direc-

tion is performed (if possible). One set is read during explo-

ration and the other during exploitation (so that the nets can 

easily evolve specialized behaviour per phase). 

 

 
Fig. 4. Neural grids and nt-B. a. Genotype encoding  

a 3x3 grid, a 7x7 grid, and their connection. b. The 

corresponding phenotype. The 3x3 grid projects into 

the focal area of the 7x7 grid. The position of focal 

areas for projections between unequally sized grids is 

dynamically controlled by the global neurotransmitter 

values nt-Bx and nt-By. This mechanism lets the nets 

conveniently allocate neurons to spatial locations. 

 

5 RESULTS 

While success rates are very low, the model does occa-

sionally produce networks with optimal performance on our 

Tolman mazes. We concisely describe an evolved solution 

here. 

As the agent moves through the maze, the 3x3 input 

grid projects onto different regions of a 7x7 grid. Modula-

tion working on the 7x7 grid records the paths travelled into 

the connectivity of this grid, replicating the maze layout. 

Activation diffusion in the grid then comes to follow this 

layout. The T-splits in the layout receive high activation due 

to their high connectivity, and consequently activation in 

other neurons on the grid comes to depend on proximity 

(along the replicated paths) to these T-splits. Effectively, 

local activation levels in the 7x7 grid come to indicate path 

length, and can thus be used to select the shortest path. 

Blockages are handled simply by updating (weakening) the 

connectivity in the grid at the position corresponding to the 

blockage. The activation pattern then settles into a new state 

with low activation on the blocked paths, as positions on 

these paths lose their proximity to one of the T-splits. 

This solution is representational in nature: the connec-

tivity pattern that forms on the grid during exploration is 

isomorphic with the maze, and the activation pattern on it 

identifies the paths and orders them by length. Also, the 

solution shows second order dynamics on the neural level. 

The neural circuit are of the bottom-left type in Fig. 3: a 

modulatory connection projects to a grid with activation 

retention (in the form of local connectivity). This second 

order circuit is crucial to the ability to solve the Tolman 

mazes (breaking either connection removes this ability). 

 

6 CONCLUSION & FUTURE WORK 

We proposed the hypothesis that mental representation is 

evolved second order learning, and tested this hypothesis 

using an artificial life model in which cognitive map ability, 

a paradigm case of mental representation, is evolved from 

the neural elements for second order neural change. Al-

though success rates are very low, successful runs provide a 

proof of principle for our hypothesis. Future directions for 

our research are extension of this approach to other do-

mains of representation, such as temporal or social forms. 
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