
Dealing with Rounding Error Problems in Evolutionary Physical Simulation
Marcin L. Pilat1, Reiji Suzuki1, Takaya Arita1

1Graduate School of Information Science, Nagoya University
Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan

(pilat@alife.cs.is.nagoya-u.ac.jp)

Abstract: This paper introduces the problem of floating-point rounding errors in physical simulation. A simple virtual creature
is simulated in a physical environment for a specified number of time steps. The effect of rounding errors is illustrated by varying
the initial position of the creature which causes a change in the fitness value computed by a simple distance-based fitness function.
With a large evaluation time, these rounding errors can produce significantly large differences in fitness. A discussion is provided
on the importance of this finding for evolutionary simulations, including suggestions to alleviate the problem.

Keywords: physical simulation, floating point, rounding errors, evolutionary computation, artificial life

1 INTRODUCTION
Physical simulation is gaining popularity in the artificial

life community. It enables experimentation with physical
models which reflect the physical nature of biological or-
ganisms. Such experiments are vital in real-world applied
robotics research. Furthermore, physical simulation allows
for a complex simulation environment, important for the
study of theoretical problems.

Physics engines are made for the video gaming market
and are not meant to be used for accurate scientific simula-
tion. However, they are valuable as they offer an approxi-
mation to more accurate physical simulation but at real-time
speeds. We present and discuss problems that occur when
using video game grade physics engines for scientific simu-
lation, focusing on the problem of floating-point rounding er-
rors. We simulate a simple virtual creature in a simple physi-
cal environment and demonstrate the rounding error problem
on fitness evaluation by varying the creature’s initial position.

We show that the fitness performance is highly sensitive
to small variations in the creature’s initial position producing
significant variation in fitness values. These rounding errors
occur after only a few simulation steps and increase drasti-
cally over simulation time. While not generally destructive,
these errors can impact the performance of evolutionary algo-
rithms that use fitness-proportional selection. Having identi-
fied the problem and presented evidence of its occurrence,
we offer solutions that can alleviate it.

2 TEST MODEL AND ENVIRONMENT
Floating-point is the most common method to represent

real numbers in computers. However, it is often poorly un-
derstood by software developers and researchers alike [1].
The most common floating-point representation currently
used is defined by the IEEE 754 standard. There are mainly
two sources of error when using floating-point representa-

Fig. 1: Hand-crafted virtual creature used in the presented
experiments composed of two bodies connected with a hinge
joint. Neural network controller not shown.

tion: not all real numbers can be exactly represented and
rounding error is inherent in floating-point computation.

The virtual creature model provides a simple yet pow-
erful model for the study of evolution of morphologies and
controllers for tasks such as locomotion [2] and light follow-
ing [3]. We use a simple hand-crafted virtual creature, using
the virtual creature model described in [2], composed of two
blocks of different sizes joined with a hinge joint (shown in
Fig. 1). The neural network consists of a sine wave genera-
tor neuron feeding into an effector allowing the smaller body
part to rotate around the hinge joint.

The testing environment is composed of a simple plane
simulation surface with friction. Virtual creatures are ini-
tially positioned above the surface and are allowed to drop
due to the gravitational force. Once a creature rests on the
ground surface and is stable from movement, the neural net-
work of the creature is turned on which makes the creature
move along the surface. We use a simple fitness function,
measuring fitness as a simple displacement from the original
resting position to the final resting position, to demonstrate
the rounding error problem.

Physical simulation is performed using the Morphid

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12), 
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 658



Academy software [2]. Morphid Academy is a virtual lab-
oratory for the evolution of functional forms called Mor-
phids. The software features physical simulation using the
Open Dynamics Engine1 (ODE) and NVIDIA PhysX2 en-
gines, graphical visualization through the OGRE graphics
engine, and an ability to perform structured evolutionary ex-
periments with a built-in genetic algorithm.

3 EXPERIMENTS AND RESULTS
We executed a suite of creature evaluation experiments

to showcase the problem with physical simulation due to
floating-point rounding errors. These experiments only per-
formed creature simulation and fitness evaluation and did not
have an evolutionary component. The position and evalu-
ation time experiments were run using the NVIDIA PhysX
engine while the precision experiments used ODE. The eval-
uated creature was recreated for each evaluation to prevent
accumulation of internal state errors. For each evaluation,
the creature was located at a certain (x,y) coordinate, along
the simulation plane. The z-coordinate was kept constant.

3.1 Position
The initial creature position experimental results demon-

strate the main problem of rounding errors in the floating-
point representation producing unexpected behavior in phys-
ical simulations. Physics engines generally produce deter-
ministic behavior (at least on the same hardware). When a
fixed initial position is used (as in most virtual creature evo-
lution systems), the behavior of a virtual creature is the same
over a number of evaluations. However, modifying the ini-
tial position by a small amount can produce chaotic behavior
with drastically different fitness values.

Fig. 2c illustrates this phenomenon showing the fitness
values of the evaluated creature for 10000 initial positions
centered around the origin and offset by multiples of a fixed
position delta δx = 0.001 along the x-axis. It is expected that
the fitness will be independent of the initial x position value,
producing a plot with a straight line. However, the fitness
values vary greatly with a somewhat random distribution.

Additional experiments were performed varying the value
of δx (not shown). Experiments with smaller values of δx
have similar fitness behavior. With larger δx, somewhat pe-
riodic patterns of fitness values can be seen, which is likely
due to the larger position values (in 100s). Similar results are
observed varying δy along the y-axis.

3.2 Evaluation Time
Evaluation time is important for physical simulation since

adequate evaluation time is required for the occurrence of

1ODE is available at http://www.ode.org under an open source
license.

2The PhysX SDK is available for free from NVIDIA Corporation at
http://developer.nvidia.com/physx.

(a) t = 10; mean = 1.311× 10−4, std dev = 5.033× 10−7

(b) t = 1000; mean = 6.70344, std dev = 0.00008

(c) t = 10000; mean = 54.25, std dev = 34.89

Fig. 2: Results of the evaluation time experiments with eval-
uation time t of 10 (a), 1000 (b), and 10000 (c). The x-
coordinate of the initial creature position is plotted against
the computed fitness value. Mean and standard deviation are
displayed for each plot.

certain behaviors. Evaluation time is expressed in terms of
evaluation steps where each step is equal to one step of the
physics engine. Fig. 2 shows the dependence of the evalua-
tion time of 10, 1000, and 10000 on the error propagation in
fitness values using δx = 0.001.

These results indicate that the problem of rounding errors
occurs quite early with only a few number of steps (10 eval-
uation steps in Fig. 2a). The rounding errors propagate over

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12), 
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 659



evaluation time to a point where they produce a large range
of results (as seen in Figs. 2b and 2c).

3.3 Precision
We run similar fitness evaluation experiments using the

single and double precision versions of ODE with various
evaluation time settings. ODE was used for these experi-
ments since the NVIDIA PhysX SDK is only available in
single precision. Selected results are shown in Fig. 3.

The results for smaller values of evaluation time (100 and
1000) show a larger dispersion of values using single preci-
sion. On the other hand, double precision produces more ir-
regular fitness behavior within range [−2, 2] (see Fig. 3a vs.
Fig. 3b). With evaluation time of 10000, the single and dou-
ble precision results are very similar with significantly large
standard deviation values as demonstrated in Fig. 3c.

From these results, it is difficult to conclude whether the
double precision fitness results are, in general, better than the
ones with single precision, especially for a higher number of
evaluation steps. It is interesting to note that while the mean
fitness values for single and double precision are very similar
with 100 and 1000 time steps, they are quite different with
10000 time steps (e.g., means of 96.434 vs. 69.447).

4 DISCUSSION
The floating-point rounding errors, presented by the ex-

amples in the previous section, are not necessarily a dis-
advantage of physics engines. The real world is inherently
chaotic and capturing this behavior in simulations allows for
results that appear more realistic and can be more suited to
the real world. Artificial life simulations, especially involv-
ing a large number of interacting entities, are often criticized
to be too orderly and thus not able to evolve novelty. Chaotic
systems, such as physics engines, can be of benefit in this do-
main since they introduce inherent perturbations. Physically
simulated ecosystems of evolving entities are a promising fu-
ture for artificial life research.

The effect of this chaotic behavior has to be considered
for each simulation since it can have a strong effect on the
performance of the system and on the acquired results. In an
evolutionary system where the fitness value decides on the re-
productive strength of an individual, it needs to be calculated
accurately for the algorithm to be effective. If the fitness of an
individual significantly varies between different evaluations,
the evolutionary algorithm might not select the individual for
reproduction even though the individual is generally fit.

Fig. 4 illustrates the effect of the position-based rounding
error problem on the performance of a genetic algorithm us-
ing the simple displacement fitness function. The variation
in fitness values can be seen on the best of population line
(in green). Furthermore, the evolutionary algorithm perfor-
mance is decreased since good individuals can be eliminated

(a) single, t = 1000; mean 0.18475, std dev = 0.00006

(b) double, t = 1000; mean 0.18487, std dev = 0.00017

(c) single, t = 10000; mean 96.434, std dev = 56.544

Fig. 3: Results of the precision experiments with single (a,c)
and double (b) precision and evaluation time t of 1000 (a,b)
and 10000 (c). The x-coordinate of the initial creature posi-
tion is plotted against the computed fitness value. Mean and
standard deviation are displayed for each plot.

from the population by worse performing individuals due to
a significant variation in fitness values over different evalua-
tions.

The fitness values and their spread are greatly dependent
on the fitness function used. Thus, care must be taken to craft
a fitness function where the position-dependent fitness varia-
tion of a fit individual is still able to distinguish it from an un-
fit individual. The simple distance-based locomotion fitness

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12), 
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 660



Fig. 4: Fitness plot of an evolutionary run with virtual crea-
tures using the locomotion distance fitness function. The ini-
tial position of each evaluated creature is randomized. The
best of population (in green) and population average (in red)
are shown.

function used in the presented experiments was specifically
chosen to demonstrate the rounding error and is not a good
choice of a fitness function to alleviate the problem.

A simple solution to the initial position-based rounding
error problem is to evaluate each individual at the same ini-
tial position. This idea works well with a simple evolution-
ary scenario where the evaluation of each virtual creature is
separate. However, it is not well suited for co-evolutionary
scenarios where multiple virtual creatures need to be evalu-
ated in the same environment. Furthermore, a slight variation
in initial position can prevent problems with the evolutionary
system exploiting the position and can generally be beneficial
if the effect of rounding errors can be minimized.

The floating-point precision setting can improve the re-
sults as we found the double precision performance in ODE
more stable. However, with a large evaluation time, the prob-
lem is still significant. For closed source engines, such as
NVIDIA PhysX, the precision is fixed and cannot be modi-
fied by the user. To alleviate the problem further, the floating-
point representation can be replaced with a fixed-point repre-
sentation if the range of required values does not need to be
large. Fixed-point representation can provide more stable be-
havior but we are currently not aware of any free 3D physics
engines that use a fixed-point representation.

A more important problem with floating-point arithmetic
is that it is not guaranteed to produce the same results on dif-
ferent computer architectures and across different compilers
or optimization settings as detailed in [4]. This can severely
affect the reproducibility of results over different machines.
The problem can be solved to an extent but solving it is con-
sidered to be very difficult [5].

5 CONCLUSIONS
We presented experimental results showing the effect of

floating-point rounding errors on a sample fitness calculation
of a virtual creature simulated using a physics engine. The
variation of fitness values due to the difference in initial po-
sition of evaluation is evident and continues to increase with
the evaluation time. The variation is significant on the time
scale that is typically used for evolutionary experiments such
as the virtual creature experiments presented.

This chaotic behavior can add beneficial randomness to
the simulations but needs to be considered, especially for
evolutionary experiments where the survival of an individual
is directly related to its fitness value as compared with other
individuals. In these evolutionary scenarios, a wrong choice
of fitness function can have a negative effect on the evolu-
tionary performance. We identified several possible methods
of alleviating the floating-point rounding error problem.

The presented issue raises some important directions for
future research. Can and should floating-point rounding er-
rors be eliminated in physical simulations? Can evolution-
ary systems using well-crafted fitness functions harness the
chaotic power of physics engines? How does this problem
affect an evolutionary ecosystem simulated with a physics
engine? The answers to these questions can situate physi-
cal simulation as a basis for future artificial life simulation
systems studying open-ended evolution.

REFERENCES
[1] Goldberg, D., What Every Computer Scientist Should

Know About Floating-Point Arithmetic. ACM Comput-
ing Surveys, 23 (1), pp. 5–48, March 1991.

[2] Pilat, M. L. and Jacob, C., Creature Academy: A Sys-
tem for Virtual Creature Evolution. In Proceedings of
the IEEE Congress on Evolutionary Computation (CEC
2008), pp. 3289–3297, IEEE, 2008.

[3] Pilat, M. L. and Jacob C., Evolution of Vision Capa-
bilities in Embodied Virtual Creatures. In Proceedings
of the 12th annual Conference on Genetic and Evolu-
tionary Computation Conference (GECCO 2010), pp.
95–102, ACM, 2010.

[4] Corden, M. J. and Kreitzer D., Consistency of Floating-
Point Results using the Intel Compiler or Why doesnt
my application always give the same answer? Pub-
lished online: http://software.intel.com/

file/32018/. Retrieved: September 2011.

[5] Fiedler, G., Floating Point Determinism. Pub-
lished online: http://gafferongames.com/

networking-for-game-programmers/

floating-point-determinism/. Retrieved:
September 2011.

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12), 
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 661




