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Abstract:
Developing motions for humanoid robots is a time consuming task. However, we note that sport or dance instructors can easily
adjust their students’ postures by simple touches. This suggests the possibility of exploiting touch for motion development, and
allows us to propose a methodology based on this concept. This requires defining how the robot should interpret user’s touches.
We propose a supervised learning approach for coping this issue, and verify its feasibility experimentally. We then study the data
collected by the algorithm, and show that the system is usable both for motion development and as a tool for studying human-
robot tactile communication. In particular, considerations on the sparsity that characterize the whole process are presented, and
policies for an efficient interpretation of tactile instructions are drawn.
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1 INTRODUCTION

Humanoid robots often have a high number of degrees of
freedom, that makes developing motions challenging. Hav-
ing robots to do automatic learning of the motion is often
impossible. To compensate this, various ways of transferring
human knowledge into the robot exists in literature. When
the task is known in advance, the programmer may insert his
knowledge in the robot’s control algorithms, such as in the
design of a Central Pattern Generator structure [1]. When
the task is only partly known in advance, the programmer
can provide modules or motion primitives, as in the Mime-
sis model [2], while the final user specifies the task motion
by composing these elementary modules. Finally, the task
may be unknown a priori and in such case the final user must
be able to transfer its knowledge to the robot directly, as in
Motion retargetting [3] and Kinesthetic demonstration [4].

Our proposed method, Teaching by Touching (TbT), aims
to tackle the third case. The idea is to mimic the way sport or
dance instructors use touch to correct their students’ move-
ments. In conventional approaches [4], robots are completely
passive during the learning process. The user is required to
force the posture of the robot to the desired one, by appli-
cation of the necessary forces. Conversely, we propose to
equip the robot with knowledge on the meaning of touch in-
structions, and give it an active role in interpreting the given
touch for moving according to the estimated user’s intention.

The main issue of such a system lies in the definition of
how the touch instruction should be interpreted by the robot.
Different approaches exist. The first is to force the user to
learn and use a fixed protocol. In this case the robot inter-
pretation algorithms can be very simple. It is sufficient to in-

terpret the instructions according to the mapping. However,
the user needs to remember which touch instruction brings
the robot to his desired posture, and this may be difficult for
inexperienced users. The other way is modeling the way hu-
man’s communicate through touch. In this case the user can
just intuitively provide a touch instruction and the robot will
try to interpret the meaning based on all of the available in-
formation.

Our system takes the second approach, as explained in the
following Section. Section 3 will present the hardware and
the system we developed, which can be used both for motion
development and for studying the mapping between instruc-
tions and desired robot responses. The ability of studying the
mapping is important, because it allows extraction of general
criteria for the interpretation of tactile instructions, that can
be used for the future design of better tactile instruction in-
terpretation algorithms. Section 4 will conclude the paper by
summarizing the main results.

2 ALGORITHM
In order to build a model of the mapping between touch

instructions and desired responses, data collection of how hu-
man interpret touch is necessary. Our system collects these
data online, during the motion development itself. In this
way no initial model is required, and the model can be pro-
gressively refined as the user interacts with the robot.

Fig.1 schematizes the data collection methodology. When
the user applies a touch instruction and the robot takes a
wrong interpretation, the user notifies the robot that the in-
terpretation is wrong, and shows the correct interpretation
by manually moving the robot to the pose as he expected.
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Fig. 1. Teaching by Touching motion development process.

The robot records this example of touch instruction and cor-
responding desired response into a database, and uses it for
improving subsequent interpretations.

The database of collected data is taken as input by a Ker-
nel regression algorithm, used for the computation of the ex-
pected meaning of the instructions received. Formally, the
input I ∈ Rn+m+o consists of the touch sensor information
Ī ∈ Rn, where n is the number of sensors, and the context of
the robot Ǐ ∈ Rm+o, included becaus it could influence the
correct interpretation of the tactile instruction. In our imple-
mentation, the context is given by the current position of the
m motors and o = 2 accelerometer values that represent the
robot’s spatial orientation. The output is a robot response,
properly a rotation angle for each of the motors M∗ ∈ Rm.

The output of the algorithm is defined as M∗ =∑E
i=1 ω(I∗, Ii)Mi where E is the number of examples in the

database, I∗ is the current input from the sensors, Ii is the
i-th example input, Mi is the i-th example posture change,
and ω(I∗, Ii) is a kernel function, defined as

ω(I∗, Ii) =


0 if ∃s : s ∈ Ψi ∧ s /∈ Ψ∗

∏
s∈Ψi

Ī(s)∗ /Ī
(s)
i

1+
√
‖Ǐ∗−Ǐi‖2

2
+
∑
s:/∈Ψi

(Ī
(s)
∗ )2

otherwise

(1)
with Ī(s)i denoting the input from the s-th tactile sensor and
Ψi the set of sensors pushed in the i-th example. This ker-
nel assures that when the sensors are pushed further the joint
rotation angles are larger. Its denominator has the role of re-
ducing the influence of the examples that present a context
strongly different from the current context Ǐ∗. The condition
on the set Ψ∗ imposes to ignore all the examples relative to
the pressure of touch sensors not being pressed in I∗.

The output of the algorithm M∗ is used to modify the mo-
tion. In particular, the motion of the robot is defined as a
set of keyframes Fk that specify the position of all the mo-
tors for a certain time tk of the motion (positions for times

Fig. 2. Diagram of M3 Neony’s motors and sensors.

tk < t < tk+1 are obtained by linear interpolation of Fk and
Fk+1). After selecting a time instant t on a GUI, the users
can touch the robot, and modify its posture at time t from Ft
to to Ft +M∗ by simple touches.

3 EXPERIMENT
To verify the feasibility of the approach, we requested four

people that never used the TbT system to develop a motion
based on the first half of Algorithm Exercise, a dance from a
Japanese TV show. The users had a reference motion video,
but were allowed to decide when they are done developing
the motion.

3.1 Hardware
The experiments were performed with a humanoid robot

capable of recognizing touch, M3-Neony [5], a humanoid
robot of small size equipped with a high number of tactile
sensors developed as a suitable platform for tactile inter-
action. M3-Neony features 22 41KgF·cm servomotors, 90
tactile sensors (shown in Fig. 2), 3 accelerometers, 2 gyro-
scopes, 2 cameras and 2 microphones. The tactile sensors
are composed of photointerruptors that translate the change
of the force applied to the robot into a change in the light
received by a phototransistor, as shown in Fig. 3. The exper-
imental setup can be seen in Fig. 4. In particular, a pedal is
used to notify the robot that its tactile interpretation is wrong,
and allows the user to start providing the correct interpreta-
tion, that the robot stores as a (Ii,Mi) couple.

3.2 Results
All the users that attended the experiment performed the

task with the proposed system without difficulties, or need
for assistance, showing that the system reveals itself to be
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Fig. 3. Schema of tactile sensor structure of M3-Neony.

intuitive for first time users. The development time for the
four users was, respectively, 221, 222, 176 and 476 min-
utes. Direct inspections of video recordings of the interaction
show that users spent much time for robot stabilization, be-
yond our expectations. This confirms experimentally the im-
portance of applying self stabilizing techniques, as the ones
in [6], even for the development of quasi-static motions. Fu-
ture works will introduce the concept of motion stability in
the interpretation of tactile instructions, to allow the robot in-
terpret the user’s desire of making the robot balanced and let
the robot compute the necessary adjustments.

One of the advantages of the systems is, as previously
stated, the possibility of studying features of the way users
employ touch for teaching. One of the main features that
can be noticed by direct data inspection is the sparsity in the
tactile interpretation taught by the users. In practice, users
mainly touched few sensors and associated interpretations
that involve the movement of few motors. As a more quan-
titative analysis, Table 1 reports the mean over the examples
of the Gini index for the sensors (G(Īi)) and for the motors
(G(Mi)), 1 ≤ i ≤ E.

This strong sparsity suggests us that the mapping between
sensors inputs Ii ∈ Rn and motorsMi ∈ Rm could be sparse
as well. To verify this hypothesis, we approximate the map-
ping with a linear function, and study the effect of enforcing
sparsity in the mapping. More specifically, let us consider
Mi, 1 ≤ i ≤ e. Let us train a linear predictor Be ∈ Rm×n+1

such that Mi ≈ Be
[
1 Īi

]T
by setting the k-th row of

Fig. 4. Experiment environment, inset shows the pedal.

Table 1. Gini Index
A B C D

avg1≤i≤E < G(Īi)¿ 0.96 0.90 0.98 0.92
avg1≤i≤E < G(Mi) > 0.82 0.78 0.87 0.70

B
(k)
e as [b(k)e β

(k)
e ], with b(k)e ∈ R and β(k)

e ∈ Rn minimizers
for the cost function

1

2N
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i=1

(
M

(k)
i − b

(k)
e − β

(k)
e Īi

)2
+ λ

[
(1− α)

1

2
‖βk

e ‖22 + α‖βk
e ‖21

]
(2)

where M (k)
i is the rotation for the k-th motor in Mi, ‖.‖2

denotes the Euclidean norm, ‖.‖1 the `1 norm, α, λ ∈ R are
constants. We note that, as α → 0 the minimization resem-
bles classic linear regression and as α→ 1 the minimization
favors sparsity [7]. Let us test the generalization capabilities
of the predictor by computing the error on the e+1-th couple
(Īe+1,Me+1), that is, compute the error

εe =

∥∥∥∥Me+1 −Be
[

1

Īe+1

]∥∥∥∥
2

(3)

for different values of α. The average error over 2 ≤ e ≤ E

is reported in Fig. 5. The graph clearly shows that increas-
ing the sparsity of the predictor improves the performances,
providing support to our hypothesis of strong sparsity in the
mapping as well. Previous works [8] showed that the desired
responses Mi lie in a subspace of the whole motor subspace,
analogously to the tendency for motions of lying in small
subspaces of the whole command space [9]. We also found
that the two spaces are strongly correlated, i.e. that if we
know the frames Fk, 1 ≤ k ≤ K of the motion being devel-
oped we can compute the subspace span < F1, . . . FK >(
Rm where the Mi have high probability of being located.
Motivated by the previous results, we can verify whether also
in this case sparsity can improve our predictions. In detail, let
us define the matrix

Γe+1 =

[
1 . . . 1

F1 . . . FK′

]
(4)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.982

0.984

0.986

0.988

0.99

0.992

penalty coefficient α

er
ro

r

Fig. 5. Average error εe for the four users for different values
of α.
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Fig. 6. Average error δe for the four users for different values
of γ.

of the frames available before the couple (Īe+1,Me+1) is
taught. Let us compute Be and the prediction pe+1 =

Be
[
1 Īe+1

]T
as above, and define ρe+1 as the mini-

mizer of pe+1 − ‖Γe+1ρe+1‖22 + γ‖ρe+1‖1. This new value
ρe+1 ∈ Rm+1 is essentially a projection on Γe+1 of the pre-
diction pe+1, whose sparsity is enforced increasing γ. Again,
we compute the average error

δe =

∥∥∥∥Me+1 − Γe+1

[
1

Īe+1

]∥∥∥∥
2

(5)

over the examples, and report the results in Fig. 6. We notice
that the best predictions are obtained for γ > 0, confirming
that also in this case sparsity of the projection coefficients
can improve our estimates.

4 CONCLUSIONS AND FUTURE WORK
In this paper, we presented a system that allows to teach

whole body motions to humanoid robots by physical inter-
action. Conceptual aspects of the exploitation of touch for
motion development were briefly discussed, and a practi-
cal system implementation, comprising a small-sized robot
equipped with 90 tactile sensors over the whole body was
briefly introduced. This system has a two-fold role. On the
one side, it allows inexperienced users to develop robot mo-
tions. On the other side, it allows studying the way users
employ touch to intuitively communicate with robots.

As an example of the possible analysis that can be done on
tactile instructions, this paper reports a study on the impor-
tance of sparsity in the mapping between pressed sensors and
desired robot movements. First, quantitative measures on the
sparsity of the input signal (touch sensors pressed) and the
output signals (motors that should be moved) were reported.
Successively, the possibility of improving the mapping from
tactile instructions to motor movements by imposing spar-
sity was investigated. Finally, the idea of using the frames
of the motion itself to improve the prediction on the robot
movement was studied. In particular, it was shown that if we
restrict the choice to a small subset of them (again, by impos-
ing sparsity in a coefficient vector), then the prediction on the

robot movement desired by the user can be improved.
This analysis provides us with important criteria for the

design of new algorithms for tactile interpretation. In par-
ticular, it tells us that ensuring sparsity can give great per-
formance improvements. For instance, if a neural network is
employed for mapping tactile instructions to robot responses,
then using rectifying neurons [10], that assure sparsity, ap-
pears to be a good choice. Future works will deal with the ex-
tension of the analysis reported here and the design of better,
more performing algorithms for tactile interpretation based
on this analysis.
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