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Abstract: A robot operating in a real environment, as opposed to industrial robot working in factory, must have
the 
exibility to cope with disturbances and irregular factors. In this paper, we propose a control method where the
control signal is selected from past experiences (stored instances) of a similar situation, according to the evaluation
of each instance. We apply our method to the control of a robot with complicated structure, driven by several elastic
actuators. Experimental results show that the control of a robot with many DOFs can be achieved by the proposed
method.
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1 INTRODUCTION
In order for a robot to work in a real environment,

the robot has to have the ability to cope with various
kinds of situations. A robot with many DOFs is advan-
tageous since it can generate various behaviors, and thus
it is expected to have the ability to adapt to various situ-
ations. A learning method such as system identi�cation
or reinforcement learning can be applicable to the con-
trol of such a robot; however, this is difficult due to its
complexity especially when its dynamics are in
uenced
by various environmental factors. For example, system
identi�cation methods using piece-wise linear functions
[4][7] to approximate the dynamics of the controlled tar-
get have been successfully applied to the control of a
robot, but a huge number of pieces becomes necessary
to approximate such complex dynamics.

Autonomous learning methods such as reinforcement
learning might also be applicable to the control of this
type of robot, in principle (e.g. Actor-Critic[1][5] algo-
rithm or Q-Learning[3][6]), but the application becomes
difficult in case of controlling a robot with many DOFs.
One of the most difficult problems is the increase in the
number of parameters to be learned. In order to deter-
mine a large number of parameters, it is necessary to
obtain a huge number of data (i.e. the curse of dimen-
sionality). Besides, the amount of available data does
not increase even though the dimensionality of the dy-
namics of the target system does increase, resulting in
longer operating time and more troubles.

In this paper, we propose a control method using
stored instances. In this method, a certain number of
instances in the database, similar to the current state,
are evaluated based on experience, and one of the in-
stances among them is selected according to this eval-
uation. The control signal is determined from the se-
lected instance. Since the control signal is determined

from the database directly, an explicit modeling of the
control target is not necessary. That is, this method is a
kind of non-parametric method and uses the knowledge
of the system implicitly included in the dataset to de-
termine the output. Note that further knowledge about
the system cannot be obtained from the database even
if a system identi�cation method is used.

2 CONTROL METHOD USING STORED

INSTANCES

In this research, we propose a control method where
the control signal is directly determined from the stored
instances. Since this method does not employ a system
identi�cation nor a learning method, it is advantageous
if the control target has a redundant structure which
makes the learning of the system difficult.

2.1 Gathering Instances

To obtain instances for determining the control sig-
nal, the robot is controlled by randomly generated con-
trol signals at �rst. During this procedure, the controller
observes the current state of the robot x(t) and output
the control signal u(t) at random. A pair consisting of
the state and the control signal di = {x(t = i), u(t = i)}
is called “an instance” and added to the database.

Each instance in the database D is denoted by di for
the understandability of the notation and the database
is de�ned as a set of instances:

D = {di| i = 1, 2, . . . , N} (1)

where N is the number of instances. Note that di+1 is
the instance composed by subsequent state and action
of the i-th instance di.
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Fig. 1. Block diagram of proposed method

2.2 Control Rule
Fig. 1 shows a block diagram of the proposed method.

After the controller observes the state x(t), nearest K

neighbors in the database are selected by the “state se-
lector”. Indexes of nearest K instances constitute the
set “KNN”.

We employ a simple evaluation function, where the
weight of each instance is determined from the distance
between the trajectory starting from each instance in
the KNN and the given goal. Thus, the weight of the
i-th instance (i ∈ KNN) is de�ned as:

wi = �min
j<p

{||G � di+j ||2} (2)

where p is the length of the trajectory to be considered
in the evaluation, and G denotes the goal state. ||G �
di+j ||2 is the Euclidean distance from the state xi+j of
the i + j-th instance.

After the evaluation for all instances in KNN , one
of the KNN instances is selected by the control signal
selector. The probability to select the i-th instance is

P (i) =


exp(wiT )

PK
j=1 exp(wjT )

i ∈ KNN

0 otherwise
. (3)

T is a parameter called inverse temperature which mod-
i�es the probability. When T is large, the instance with
maximum weight is selected almost deterministically.
On the other hand, when it is small, every instance can
be selected with equal probability.

3 CONTROL OF ELASTIC BINARY

MANIPULATORS
We applied the proposed method to a control task

(reaching task) of a redundant robot (Fig. 2). This
robot is a variation of binary manipulators [2] with elas-
tic links.

3.1 Elastic Binary Manipulators
The Elastic Binary Manipulators has several links

with a truss-like structure. As seen in Fig. 2, each link
(line) and joint (black point) is modeled by a spring
damper without mass, and a mass-point, respectively.
The control signal to the robot consists of the natural
lengths of the links, and changes the equivalent point
(posture). In the simulation, the natural lengths of the
12 links represented in the �gure by dashed lines can be
changed according to the control signal, and the others
are �xed. The length of each variable link can have a
larger or smaller value and the former is 1.5 times longer
than the latter.

The force applied to the i-th mass-point is de�ned by:

Fi =
∑
j∈Ci

{
�k(lij � l̄ij)

si � sj

||si � sj ||2
� D(vi � vj)

}
,

(4)

sι and vι denote the position and the velocity of the ι-th
joint. lij and l̄ij are the current length and the natural
length of the link connecting the i-th and the j-th joints.
k and D are the spring and the damping constants.

Fig. 2. Structure of the EBM

3.2 Reaching task
The purpose of the reaching task is to move the end-

effector (blue point) to the goal position. During the
instance-gathering phase (500,000 time steps), 6 links
are selected randomly and their natural lengths are al-
tered (small to large/ large to small) every 1,000 time
steps. To generate meaningful motions, the control sig-
nal is maintained over a certain time period (1,000 time
steps).

We conducted experiments with the goal G =
(�0.2, 0.43). K was set to 5 and T was set to 100 and
1,000. These values were determined by trial and error.

Fig. 3(a) shows the density of state-instances stored
in the database visualized by a kernel density estima-
tion method. Fig. 3(b) and Fig. 3(c) show the density
of the state while performing the reaching task. The
yellow-colored area indicates that the end-effector stays
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Fig. 3. Result of reaching task: Elastic Binary Manipulators

in these areas for a long time. The red point in each
�gure represents the goal position of the reaching task,
and it can be seen that the density concentrates to the
area close to the goal in both cases. These results show
that our control method allows the robot to achieve the
reaching task. The performance of the case T = 1000 is
worse than that of T = 100. This suggests that stochas-
tic choice of control signal makes the robot escape from
the local optima.

We conducted an additional experiment to investigate
whether our method can exploit the redundancy of the
robot (Fig. 3(d)). Even when a controllable link is bro-
ken (the natural length is �xed), the proposed method
allows the robot to achieve the task if there is a link
which is able to compensate the broken link.

4 CONTROL OF HUMAN-LIKE

ROBOTIC ARM
We applied the proposed method to a control task

of a human-like robotic arm (Fig. 4). We conducted a
reaching task by this robot.

4.1 Human-Like Robotic Arm

Fig. 4. Human-Like Robotic Arm

The human-like robotic arm consists of 6 links and

has a high degree of freedom (9-DOFs). More than 30
pneumatic actuators (arti�cial muscles) are connected
to these links, and are controlled by 26 air-
ow control
valves. Each actuator expands (contracts) when the air
pressure decreases (increases). Actuators are located at
positions similar to those of human muscles. The air

ow of each valve monotonically increases according to
the control signal, i.e. the output of the D/A converter
(output range: 0 � 6[V ]). To control this robotic arm,
it is necessary to determine the control signal consisting
of 26 analog values depending on the state of the robot.

4.2 Reaching task
The purpose of the reaching task is to move the

hand (represented by the blue point in Fig. 4) to
the goal position. During the instance-gathering phase
(1500[s]), 13 actuators are selected randomly and their
input values are altered randomly in every 1[s]. We
conducted two experiments with two different goals,
G = G1(0, 150, 140) and G2(�40, 100, 80). In each
reaching task, the operation time was 150[s] and the
control signal is altered once in 0.5[s]. K and T were
set to 10 and 2

15 by trial and error.
Fig. 5(a) and Fig. 5(b) show the density of the hand

position in the database. Fig. 5(c) � Fig. 5(f) show the
densities of the position of the hand during the reaching
tasks projected on the X-Y and X-Z planes. The red
point in each �gure represents the goal position, and
we can see that the density concentrates to the goal in
both cases. These results show that our control method
allows the robot to achieve the reaching task.

Reaching G2 seems worse than in the case of G1,
since the density spreads widely. If there are fewer in-
stances approaching the goal in the database, it is dif-
�cult to achieve the task since such a instance is often
cut off from the k-NN. The reason why reaching G2 is
more difficult is that there are fewer instances useful for
achieving the task.
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Fig. 5. Result of reaching task: Human-Like Robotic Arm

5 CONCLUSION

In this paper, we proposed a control method using
stored instances which does not need an explicit mod-
eling of the control target. We applied the proposed
method to the control tasks of redundant robots and
showed that the reaching task can be achieved by our
method.

One of the problems of our method is performance
degradation due to the bias of the distribution of the
instance in the database. To overcome this, it might
be useful to omit similar instances from the database or
employ an importance sampling method. To develop a
method for adding the instances in an online manner is
also part of our future work.

REFERENCES

[1] H. Kimoto and S. Kobayashi: “An Analysis of Ac-
tor/Critic Algorithms using Eligibility Traces: Re-
inforcement Learning with Imperfect Value Func-
tions” Journal of Japan Society of Arti�cial Intelli-
gence, Vol.15, No.2, pp.267-275,2000

[2] Lees, D.S. and Chirikjian, G.S.: “A Combinatorial
Approach to Trajectory Planning for Binary Ma-
nipulators” Proc of ICRA, pp.2749 – 2754, 1996.

[3] M. Asada, S. Noda, S. Tawaratsumida, and K.
Hosoda: “Vision-Based Reinforcement Learning for
Purposive Behavior Acquisition.” Proc. of ICRA,
pp.146–153, 1995.

[4] M. Haruno , D.M.Wolpert, and M. Kawato: “Mo-
saic: Module selection and identi�cation for con-
trol,” Neural Computation, vol.13, no.10, pp.2201–
2220, 2001

[5] Vijaymohan R. Konda and Vivek S. Borkar:
“Actor-critic–type learning algorithms for Markov
decision processes” SIAM J. Control Optim. Vol.
38, No. 1, pp.94–123, 1999

[6] Watkins, C. J. C. H. and Dayan, P.: “Technical
Note: Q-Learning” Machine Learning 8, pp. 279–
292, 1992

[7] Y. Tazaki, J. Imura: “Graph-based Model Predic-
tive Control of a Planar Bipedal Walker” 17th In-
ternational Symposium on Mathematical Theory of
Networks and Systems, pp.128–133, Kyoto, Japan,
July 24–28, 2006.

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12), 
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 1126




