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Abstract: In order to guarantee robotic stability, a new combined pole-placement method is proposed in this paper. The

proposed method combines the linear quadratic regulator (LQR) into the pole-placement design. Firstly, a mathematical model

of Two-Wheeled Mobile Robot (TWMR) is analytically derived from real TWMR. Secondly, the LQR for TWMR model is

designed, and optimal poles can be obtained from the designed LQR. Thirdly, selection conditions of the best poles are the

following; 1) the guarantee of convergence speed for TWMR system, 2) the number of vibration times for TWMR, 3) saturation

evasion of the control input to TWMR’s actuators, 4) the ratio of an imaginary part and a real part is carried out near one of

selected poles. The pole-placement method selects the best poles than the optimal poles of LQR. Finally, the stability of the

proposed method is confirmed by experiment results.
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1 INTRODUCTION
Two-wheeled mobile robot (TWMR) always exhibits

many problems existing in industrial applications, for ex-

ample, various nonlinear behaviors under different operation

conditions, external disturbances, and physical constraints on

some variables. Therefore, the task of on-line control of a

highly nonlinear unstable has been a challenge for the mod-

ern control field. Since the system behaviors of TWMR in-

cluding actuator dynamics are highly nonlinear, it is difficult

to design a suitable control system that realizes real-time con-

trol and accurate balancing control at all time.

On the other hand, many research results of TWMR have

been applied to various actual problems for designing walk-

ing gaits of humanoid robot, robotic wheelchairs, personal

transport systems, and so on. Recently, the control problems

of TWMR have been intensively studied due to the challeng-

ing demand of fast and precise performance. Besides protect-

Ψ: body pitch angle, θl,r: left and right wheel angle,

θml,r : DC motor angle

Fig.1 Side and plane view of TWMR

ing safety of human and robotic operators, the robotic stabil-

ity is very important research theme at the longest. There

have been many studies on the stable problem, for example,

sliding-model control [1], fuzzy switched swing-up control

[2], and adaptive control [3] are researched on TWMR. But,

these controls are very complex and the response time of the

mobile robot system is slower.

2 TWMR’S MODEL
Figure 1 shows side view and plane view of TWMR, the

coordinate system shown in Fig.1 is used TWMR model, and

physical parameters of TWMR by measurements are shown

in Table 1 [4].

We can drive motion equations from TWMR by the La-

grangian method based on the coordinate system shown in

Fig.1, the generalized forces Fθ, FΨ, Fφ can be expressed

Table 1 Physical parameters of TWMR
Gravity acceleration g=9.81 (m/sec2)

Wheel weight m=0.03 (kg)

Wheel radius R=0.04 (m)

Wheel inertia moment Jw=mR2/2 (kgm2)

Body weight M=0.6 (kg)

Body width W=0.14 (m)

Body depth H=0.144 (m)

Distance between mass and wheel axle L=H/2 (m)

Body pitch inertia moment JΨ=ML2/3 (kgm2)

Body yaw inertia moment Jφ=M(W2+D2)/12 (kgm2)

DC motor inertia moment Jm=1 ×10−5 (kgm2)

DC motor resistance Rm=6.69 (Ω)

DC motor back EMF constant Kb=0.468 (V sec/rad)

DC motor torque constant Kt=0.317 (Nm/A)

Gear ratio n=1

Friction coef. of body and DC motor fm=0.0022

Friction coef. between wheel and floor fw=0
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using the DC motor voltages vl and vr.

Fθ =
[
(2m+M)R2 + 2Jm + 2n2Jm

]
θ̈

+(MLR− 2n2Jm)ψ̈ (1)

Fψ = (MLR− 2n2Jm)θ̈

+(ML2 + Jψ + 2n2Jm)ψ̈ −MgLψ (2)

Fφ =

[
1

2
mW 2 +

W 2

2R2
(Jw + n2Jm)

]
φ̈ (3)

here, consider the limit Ψ −→ 0, and neglect the second

order term like Ψ̇2.

2.1 State space model
Now, from (1) to (3), we can obtain the following state

space model of TWMR.

ẋ1(t) = A1x1(t) +B1u(t) (4)

y1(t) = C1x1(t) (5)

where, the state variable x1(t)=[θ, ψ, θ̇, ψ̇]
T , the input

u(t)=[vr, vl]
T , and the output y1(t)=[θ, ψ, θ̇, ψ̇]T , the pa-

rameter matrices of the state space model (4), (5) describe

the following.

A1 =

⎡
⎢⎢⎣

0 0 1 0

0 0 0 1

0 A1(3, 2) A1(3, 3) A1(3, 4)

0 A1(4, 2) A1(4, 3) A1(4, 4)

⎤
⎥⎥⎦ (6)

B1 =

⎡
⎢⎢⎣

0 0

0 0

B1(3, 1) B1(3, 2)

B1(4, 1) B1(4, 2)

⎤
⎥⎥⎦ (7)

C1 = diag [1 1 1 1] (8)

E =

[
E(1, 1) E(1, 2)

E(2, 1) E(2, 2)

]
(9)

A1(3, 2) = −gMLE(1, 2)

detE

A1(4, 3) =
gMLE(1, 1)

detE

A1(3, 3) = −2 [(β + fw)E(2, 2) + βE(1, 2)]

detE

A1(3, 4) =
2 [(β + fw)E(1, 2) + βE(1, 1)]

detE

A1(4, 3) =
2β [E(2, 2) + E(1, 2)]

detE

A1(4, 4) = −2β [E(1, 1) + E(1, 2)]

detE

B1(3, 1) =
α [E(2, 2) + E(1, 2)]

detE

B1(4, 1) = −α [E(1, 1) + E(1, 2)]

detE

det(E) = E(1, 1)E(2, 2)− E(1.2)2

E(1, 1) = (2m+M)R2 + 2Jw + 2n2Jm

E(1, 2) = MLR− 2n2Jm

E(2, 1) = MLR− 2n2Jm

E(2, 2) = ML2 + Jψ + 2n2Jm

α =
nKt

Rm
, β =

nKtKb

Rm
+ fm

2.2 LQR design for TWMR
In this section, LQR design for TWMR is considered as

an expansive state space equation. We select θ as a reference

state θref=Cθx1ref , and define an error e(t)=Cθx1ref -

θ(t), ż(t) = e(t) , then the expansive state space equation

can be expressed by

¯̇x(t) = Āx̄(t) + B̄ū(t) (10)

¯̇x(t) =

[
ẋ(t)

ż(t)

]
, Ā =

[
A1 0

0 Cθ

]
,

B̄ =

[
B1 0

0 -Cθ

]
, ū(t) =

[
u(t)

x1(t)

]

According to an optimal feedback gain matrix K such that

the feedback control law

ū∗(t) = −Kx̄(t) (11)

=
[ −kf −ki

] [ x(t)

z(t)

]
(12)

K = R−1B̄
T
P (13)

minimizes the performance index

J =

∫ ∞

0

(x̄T (t)Qx̄(t) + ūT (t)Rū(t))dt (14)

subject to the constaint equation (10). Here, matrix P of

(13) is the unique positive-definite solution of the associated

matrix Riccati Equation

Ā
T
P + PĀ+Q− PB̄R−1B̄

T
P = 0 (15)

As stated above, a servo control for TWMR is shown in

Fig.2, where Cθ = diag [1, 0, 0, 0] , and the weight

matrices Q, R of (13) by experimental trial and error.

Q = diag [1 6× 105 1 1 4× 102] (16)

R = diag [1× 103 1× 103] (17)

To calculate the LQR problem, and obtain the gain K is

K = [kθ, kψ, kθ̇, kψ̇, ki] (18)

K = [−0.867, −31.931, −1.154, −2.783, −0.446]
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Fig. 2 Servo control system block diagram

3 PROPOSED METHOD
In this section, we present a design proposed method

called a combined pole-placement method. We assume that

all state variables are measurable and are available for feed-

back. If the system considered is completely state control-

lable, then poles of the closed-loop system may be placed at

any desired locations by means of state feedback through an

appropriate state feedback again matrix.

The present design technique begins with a determina-

tion of the desired closed-loop poles based on the transient-

response and frequency-response requirements, such as

speed, damping ratio, and bandwidth, sa well as steady-state

requirements.

3.1 Pole-placement for TWMR
From the expansive state space equation (10) and the op-

timal control input (11), the closed-loop system can be ex-

pressed as

¯̇x(t) = Āx̄(t)− B̄Kx̄(t)

= (Ā− B̄K)x̄(t) (19)

The desired characteristic equation is

|sI − Ā+ B̄K| = (s− p1)(s− p2) · · · (s− pn)

= sn + an−1s
n−1 + · · ·+ a0 = 0 (20)

where, pi (i=1, 2, · · ·, n) are poles of the closed-loop system

(19). The first step in the pole-placement design approach is

to choose the locations of the desired closed-loop poles. The

most frequently used approach is to choose such poles on

Fig.3 Range of desired poles

basis of experience in root-locus design, placing a dominant

pair of closed-loop poles and choosing other poles so that are

far to the left of the dominant closed-loop poles.

We have to note that if the dominant closed-loop poles is

far from the jω-axis, so that the system response becomes

very fast, the signals in the system become very large, with

the result that system may become nonlinear, this should be

avoided and shown in Fig.3.

Another approach is based on LQR approach and deter-

mines the desired closed-loop poles such that the system bal-

ances between the acceptable response and the amount of

control energy required.

In the complex coordinate of Fig.3, an angle δ =

tan−1(
√
1− ζ2/ζ), here ζ is a damping ratio. For servo

control system of robotics, TWMR and so on, ζ = 0.6− 0.8

and δ = 37◦ − 53◦ have been generally accepted [5].

3.2 Choosing the location of desired closed-loop poles
From K of (18), the pole P0 can be derived and shows

the following

P0 = [−284.41,−10.92,−1.3± j0.73,−1.47] (21)

We change the damping ratio ζ with 0.05 step from 0.6 to

0.8, and obtain poles Pi (i = 1, · · · , 5) their feedback gains,

the ζ and the natural frequency ωn are shown in Table 2, 3

and 4, respectively.

Table 2 Closed-loop poles

p1 p2 p3, p4 p5

P0 −284.41 −10.9 −1.3± j0.73 −1.47

P1 −284.41 −10.9 −1.3± j0.96 −1.47

P2 −284.41 −10.9 −1.3± j1.15 −1.47

P3 −284.41 −10.9 −1.3± j1.31 −1.47

P4 −284.41 −10.9 −1.3± j1.51 −1.47

P5 −284.41 −10.9 −1.3± j1.73 −1.47

Table 3 Feedback gains
kθ kψ kθ̇ kψ̇ ki

P0 −0.867 −31.931 −1.154 −2.783 −0.446

P1 −0.927 −32.059 −1.160 −2.797 −0.524

P2 −0.990 −32.191 −1.167 −2.810 −0.604

P3 −1.051 −32.320 −1.173 −2.823 −0.683

P4 −1.138 −32.506 −1.182 −2.841 −0.796

P5 −1.249 −32.741 −1.193 −2.865 −0.939

Table 4 Damping ratio and Natural frequency
Damping ratio Natural frequency

ζ ωn (rad/s)

P0 0.87 1.49

P1 0.80 1.62

P2 0.75 1.74

P3 0.70 1.85

P4 0.65 1.99

P5 0.60 2.16
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Fig.4 Unit step responses with Pi

Figure 4 shows unit step responses of the closed-loop with

Pi. On the same method, we keep the ζ, and change the

real number of the conjugate number −1.3± j0.73 with 0.2

step to negative direction. We obtain the good pole P6 =

[−284.4, −10.9, −1.5 ± j0.84, −1.47] with gain margin

5.0 [dB], resonant peak -10.1 [dB], setting time 4.79 (sec.),

overshoot -0.41, and ζ = 0.87, ωn = 1.72 (rad/sec.).

4 EXPERIMENTAL RESULTS
A real TWMR is established practically in our laboratory

to illustrate the effectiveness of the proposed method. Us-

ing the same parameters shown in Table 1, real stable posi-

tion experiment is implemented to verify the feasibility of the

proposed method with the pole P6 and the LQR method with

P0, respectively.

Fig.5 presents the body angle Ψ which tests the stability

of TWMR, a small shaking of the body angle with the pole

P6 than the pole P0. Fig.6 shows the shifting distance of

TWMR at an appointed position. A large distance error using

the pole P0 is produced, but, the proposed method with the

pole P6 generates very small movement from the appointed

position.

Fig.5 Experimental results of body angle

Fig.6 Experimental results of shifting distance

5 CONCLUSION
This paper has implemented the LQR method and pole-

placement developmental hardware and software on the real

TWMR system, the combined pole-placement method has

been newly proposed to control TWMR achieving the desired

control behaviors than LQR method.

Finally, the experiment of stable position control was ex-

ecuted using the proposed method and LQR method, the

experimental results indeed have verified that the proposed

method is effective for the real TWMR system.
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